DGCNN是一种基于动态图卷积的点云学习网络,它可以提取点云的局部和全局特征,用于分类和分割等任务。DGCNN的核心模块是EdgeConv,它将点云看作是一个动态的图结构,每个点与其k近邻构成一个局部图,然后对每条边进行卷积操作,最后对每个点的边特征进行聚合。
DGCNN网络的参数量主要取决于EdgeConv的层数、卷积核的大小和通道数,以及后续的全连接层的维度。根据卷积层和全连接层的参数量计算公式,我们可以得到DGCNN网络的参数量如下:
假设输入点云的维度为$N \times D $,其中 N N N 是点的数量, D D D是点的特征维度(例如坐标或颜色)。假设每层EdgeConv的卷积核的大小为$ 1 \times 1 ,输入通道数为 ,输入通道数为 ,输入通道数为 C_i ,输出通道数为 ,输出通道数为 ,输出通道数为 C_o ,是否使用偏置为 ,是否使用偏置为 ,是否使用偏置为 b $,则每层EdgeConv的参数量为:
P E d g e C o n v = k 2 C i C o + b C o P_ {EdgeConv} = k^2 C_i C_o + b C_o PEdgeConv=k2CiCo+bCo
其中, k 是每个点的邻居数量, b = 1 表示使用偏置, b = 0 表示不使用偏置。如果使用批量归一化层,还需要加上两个可训练的参数 \alpha 和 \beta ,每个参数的数量为 C_o 。
假设DGCNN网络有 L 层EdgeConv,每层的输出通道数为 C_l ,则所有EdgeConv的参数量为:
P D G C N N = ∑ l = 1 L P E d g e

最低0.47元/天 解锁文章

1450

被折叠的 条评论
为什么被折叠?



