ai命名实体识别模型_用深度学习做命名实体识别(四)——模型训练

本文介绍了如何使用深度学习,特别是BERT模型,进行命名实体识别(NER)的训练过程。包括准备训练样本,使用brat工具进行标注,转换数据格式,准备预训练的BERT模型,搭建GPU训练环境,以及训练和测试模型的详细步骤。最终,通过训练得到了一个能识别6种实体的模型。
摘要由CSDN通过智能技术生成
通过本文你将了解如何训练一个人名、地址、组织、公司、产品、时间,共6个实体的命名实体识别模型。
训练建议在GPU上进行,如果你没有GPU训练环境,或者你只是想快速获得这样一个模型来体验一下效果,这里提供一个 直接获取训练好的模型的途径,扫码加入笔者的知识星球——" 程序员的私藏馆",在里面找就可以啦。

95d4180f7dadfd6369afca19fa73d20b.png
所谓私藏,就是不舍得公开的好东西,不妨看一下O(∩_∩)O

准备训练样本

下面的链接中提供了已经用brat标注好的数据文件以及brat的配置文件,因为标注内容较多放到brat里加载会比较慢,所以拆分成了10份,每份包括3000多条样本数据,将这10份文件和相应的配置文件放到brat目录/data/project路径下,然后就可以从浏览器访问文件内容以及相应的标注情况了。

  • 链接:https://pan.baidu.com/s/1-wjQnvCSrbhor9x3GD6WSA
  • 提取码:99z3

如果你还不知道什么是brat,或还不清楚如何使用brat,强烈建议先阅读前两篇文章《用深度学习做命名实体识别(二):文本标注工具brat》、《用深度学习做命名实体识别(三):文本数据标注过程》。

标注数据虽然有了,但是还不能满足我们的训练要求,因为我们需要根据ann和txt,将其转成训练所需的数据格式,格式如下:

da7f100001ddffce221585e962e1c037.png

可以看到,每一行一个字符,字符后面跟上空格,然后跟上该字符的标注, 每个样本之间用空行分隔。

另外,也可以看到这里采用的是BIO的标注方式:

  • B,即Begin,表示开始
  • I,即Intermediate,表示中间
  • O,即Other,表示其他,用于标记无关字符

转换代码如下:

# -*- coding: utf-8 -*-

"""
数据格式转化
"""
import codecs
import os

__author__ = '程序员一一涤生'

tag_dic = {"时间": "TIME",
           "地点": "LOCATION",
           "人名": "PERSON_NAME",
           "组织名": "ORG_NAME",
           "公司名": "COMPANY_NAME",
           "产品名": "PRODUCT_NAME"}


# 转换成可训练的格式,最后以"END O"结尾
def from_ann2dic(r_ann_path, r_txt_path, w_path):
    q_dic = {}
    print("开始读取文件:%s" % r_ann_path)
    with codecs.open(r_ann_path, "r", encoding="utf-8") as f:
        line = f.readline()
        line = line.strip("nr")
        while line != "":
            line_arr = line.split()
            print(line_arr)
            cls = tag_dic[line_arr[1]]
            start_index = int(line_arr[2])
            end_index &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值