linux3.1.4内核编译,Ubuntu 10.04下编译Linux Kernel 3.1.6

工具:

GCC

LD

MAKE

util-linux(fdformat)

module-init-tools(depmod)

tune2fs

JFS(IBM的文件系统)

ReiserFS

XFS(SGI的文件系统)

quota-tools

nfs-utils

udev(udevinfo)

ps

这些工具最好与内核源码目录下的Documentation/Changes文件来确定哪些版本的工具能满足你的需求.即最好是按文件中指定的版本工具进行构建.

最好是在普通用户下进行构建内核,只在必须使用根用户时才切换到root用户.

下载好内核源码:

内核源码不能放在/usr/src/linux目录下,因为这里存放的是构建系统库所需要的内核,而不是你自己定制的新内核.不要在/usr/src/目录下进行内核开发,应该在一个用户目录下做这些事情,这样就不必担心会对系统造成破坏.

创建内核配置:

1.从头开始:make config

2.默认配置:make defconfig

3.控制台配置:make menuconfig

4.图形化方式:make gconfig

5.另一种图形化方式:make xconfig

构建内核:

make

高级构建内核选项:

1. make -j[num]

其中的num中你物理CPU的个数的两倍.例如如果你的CPU为双核,则为make -j4.注意,如果-j 后不加任何数值,则在内核构建过程将为内核源码树中每一个子文件夹创建一个新的线程,这样能够轻易将你的计算机停止响应.并耗费更长的时间才能完成内核的构建.

2.将输出的文件放到指定目录中:

make O=/dir/

3.不同的架构:

make ARCH=x86_64 defconfig

安装内核:

编译模块:

sudo make modules

sudo make modules_install

内在映像:

mkintramfs 3.1.6 -o /boot/initrd.img-3.1.6

其中3.1.6为/lib/modules下的目录名称.

会生成:/initrd.img-3.1.6文件

sudo make install

make install

主要会生成一下文件:

config-3.1.6  --内核编译配置文件内容就是make menuconfig出来的文件.config的内容,只是文件名不同而已

vmlinux-3.1.6

System.map-3.1.6

编译内核->编译模块->安装模块->做模块镜像->安装内核

(下面一行是使用uheader工具加速启动系统的发行版并且/var分区是独立的时候使用的:)

sudo sed -i 's+^start on starting mountall+start on mounted MOUNTPOINT=/var+' /etc/init/ureadahead.conf

编译内核时,如果出现:

driver mdio-gpio is already registered

请重新编译内核,并将mdio-gpio设置为编译为模块,而不是编译进内核里.

8606544ec77c72a043beecb6da79d683.png

后记:

如果没有必要的话,还是不要用新的内核来运行电脑,只作研究就好..我发现用新的内核,我的Ubuntu10.04变得很不稳定,时不进自动重启x-window...呵呵...最好只好把原来的弄回去..呵呵..不过linux还真的想不明白它是怎样运行的,在运行的时候都可以随意更换内核的...一个字:强!0b1331709591d260c1c78e86d0c51c18.png

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值