[Graph] Learning Attribute-Structure Co-Evolutions in Dynamic Graphs

该研究提出了一种同时学习图的属性和结构演化的创新方法,适用于多种图神经网络(GNN)。通过S-stack temporal self-attention和多任务学习,实现了属性预测与链接预测的联合演化。实验在进化合作网络和虚拟货币图数据集上进行,使用了GCN、GAT和GraphSage等模型进行验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Published in KDD-DLG workshop 2020. https://arxiv.org/pdf/2007.13004.pdf

关键词:图神经网络,图演化

摘要:提出了一个同时学习图的属性(attributes)和结构(structure)的演化的方法。该方法可以用在各种GNN上。联合学习两个任务:属性预测和链接预测。

方法
1)S-stack temporal self-attention
2)多任务学习,共同演化。

实验
两个任务:属性预测和链接预测。
两个数据集:Evolutionary co-authorship graphs;Evolutionary virtual currency graph。
三个改装models:GCN,GAT,GraphSage

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值