Published in KDD-DLG workshop 2020. https://arxiv.org/pdf/2007.13004.pdf
关键词:图神经网络,图演化
摘要:提出了一个同时学习图的属性(attributes)和结构(structure)的演化的方法。该方法可以用在各种GNN上。联合学习两个任务:属性预测和链接预测。
方法:
1)S-stack temporal self-attention
2)多任务学习,共同演化。
实验:
两个任务:属性预测和链接预测。
两个数据集:Evolutionary co-authorship graphs;Evolutionary virtual currency graph。
三个改装models:GCN,GAT,GraphSage
该研究提出了一种同时学习图的属性和结构演化的创新方法,适用于多种图神经网络(GNN)。通过S-stack temporal self-attention和多任务学习,实现了属性预测与链接预测的联合演化。实验在进化合作网络和虚拟货币图数据集上进行,使用了GCN、GAT和GraphSage等模型进行验证。

被折叠的 条评论
为什么被折叠?



