android room 分页,Android Paging分页库的学习(一)—— 结合本地数据进行分页加载...

Paging分页面是google推出的一个结合RecyclerView进行分页加载数据的一个全新架构库,主要是为了解决一次性加载大量数据而造成的资源浪费问题。通过分页的方式,每次加载一页数据,既可以加快界面的渲染,又可以减少对象等资源的创建消耗。具体可以看官网

分页库主要由以下三个部分组成

DataSource: 数据源,定义获取数据的方式,有三种方式,分别是

1. PageKeyedDataSource

2. ItemKeyedDataSource

3. PositionalDataSource. 基于位置信息进行数据的加载,和Room数据库或者本地数据源一起搭配。

复制代码

PagedListAdapter: 分页库适配器,继承于RecyclerView的适配器,内部需要实现一个DiffUtil.ItemCallback差分器分析数据是否发生了改变。

PagedList: 定义分页库的配置,分别有默认加载数据大小,分页数据大小等。并且通过PagedListAdapter将数据的变化进行更新。

一、通过本地数据进行分页加载

(一)DataSource的生成

由于此次使用的是本地数据,所以需要的列表的位置信息,在这里,我们需要实现基于PositionalDataSource的数据源

class LocalDataSourceFactory:DataSource.Factory() {

override fun create(): DataSource {

return localDataSource

}

companion object {

val localDataSource = object : PositionalDataSource() {

private fun computeCount(): Int {

return 10000

}

private fun loadRangeInternal(startPosition: Int, loadCount: Int): List {

val articleList = mutableListOf()

val authorPrefix = "作者"

val titlePrefix = "我是一个标题"

val typePrefix = "类别"

val timeStampBase = 1531548138000L

for (i in 0 until loadCount) {

var articleEntity = ArticleEntity()

articleEntity.id = (startPosition + i).toString()

articleEntity.author = "$authorPrefix ${articleEntity.id}"

articleEntity.title = "$titlePrefix ${articleEntity.id}"

articleEntity.type = "$typePrefix ${articleEntity.id}"

articleEntity.timeStamp = timeStampBase + i * 1000L

articleList.add(articleEntity)

}

return articleList

}

override fun loadRange(params: LoadRangeParams, callback: LoadRangeCallback) {

Log.e("LoadRange", "range" + params.startPosition)

callback.onResult(loadRangeInternal(params.startPosition, params.loadSize))

}

override fun loadInitial(params: LoadInitialParams, callback: LoadInitialCallback) {

val totalCount = computeCount()

val position = PositionalDataSource.computeInitialLoadPosition(params, totalCount)

val loadSize = PositionalDataSource.computeInitialLoadSize(params, position, totalCount)

callback.onResult(loadRangeInternal(position, loadSize), position, totalCount)

}

}

}

}

复制代码

需要实现PositionalDataSource的两个方法,分别是loadInitial和loadRange,loadInitial负责拉取配置的加载条数,即下文的PagedList配置, loadRange负责加载每次分页所需的数据。所以实现数据源很简单,只需定义好首次加载数据和分页加载数据的逻辑既可。

(二)PagedListAdapter的实现

由于PagedListAdapter继承自RecyclerView的适配器,所以实现起来并不难,只是需要提供一个差分的实现用来进行数据的分析,代码如下:

class ArticlePageAdapter : PagedListAdapter(diffCallback) {

override fun onBindViewHolder(holder: ArticleViewHolder, position: Int) {

holder.bindTo(getItem(position))

}

override fun onCreateViewHolder(parent: ViewGroup, viewType: Int): ArticleViewHolder =

ArticleViewHolder(parent)

companion object {

private val diffCallback = object : DiffUtil.ItemCallback() {

override fun areItemsTheSame(oldItem: ArticleEntity, newItem: ArticleEntity): Boolean =

oldItem.id == newItem.id

override fun areContentsTheSame(oldItem: ArticleEntity, newItem: ArticleEntity): Boolean =

oldItem == newItem

}

}

}

复制代码

(三)PagedList的配置

PagedList主要是设置分页的大小,初始化加载的数据大小等配置。

val pagedListConfig =PagedList.Config.Builder().setEnablePlaceholders(true).setPageSize(10).setInitialLoadSizeHint(20).build()

var postList = LivePagedListBuilder(LocalDataSourceFactory(), pagedListConfig).build()

复制代码

通过以上代码生成是一个带LiveData的PagedList

(四)总结

生成DataSource负责数据来源, 接着实现PagedListAdapter负责UI的渲染,最后进行PagedList分页的一些配置。生成一个带LiveData的PagedList,一旦数据进行变化,便会通知pageAdapter调用submitList进行UI的更新

class LocalDataPagingActivity:AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContentView(R.layout.act_local_data_paging)

val pageAdapter = ArticlePageAdapter()

recycle_article.adapter = pageAdapter

recycle_article.layoutManager = LinearLayoutManager(this)

val pagedListConfig = PagedList.Config.Builder().setEnablePlaceholders(true).setPageSize(10).setInitialLoadSizeHint(20).build()

var postList = LivePagedListBuilder(LocalDataSourceFactory(), pagedListConfig).build()

postList.observe(this, Observer {

pageAdapter.submitList(it)

})

}

}

复制代码

demo已经上传,点击 传送门

,如有疑惑或者错误,欢迎指出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值