Redis 连接池耗尽的一次异常定位

转载请注明出处:

  最近在项目中遇到一个奇怪的现象,项目运行环境中的redis在业务运行中,一直没有更新redis的值,在服务的日志中也没有看到相关的异常,导致服务看起来正常,但和redis相关的功能却没有更新。记录下这个异常定位解决的过程。

  登录到redis里面,发现redis也是运行正常的,且能正常获取。所以进入到了服务端里面,获取jvm线程进行具体分析,看到有很多个线程栈如下:

         

定位分析过程

    • pool-4-thread-1
      线程名称,表明该线程属于线程池 pool-4 的第一个工作线程(线程池通常由 ThreadPoolExecutor 管理)。

    • Id=211
      JVM 内部分配的线程唯一标识符(非操作系统线程ID)。

    • CPU 时间统计

      cpu=692644037380 ns usr=644020000000 ns 
      • cpu=692644037380 ns
        线程从启动至今消耗的 总 CPU 时间(包括内核态和用户态),单位为纳秒(≈ 692.64 秒)。

      • usr=644020000000 ns
        线程在 用户态(User Mode) 消耗的 CPU 时间(≈ 644.02 秒)。
        差值意义cpu - usr ≈ 48.62秒 为线程在内核态(Kernel Mode)的耗时,通常由系统调用(如 I/O、锁竞争)引起。


      线程阻塞与等待统计

      blocked 2294 for -1 ms waited 28442 for -1 ms
      • blocked 2294
        线程因 竞争锁(synchronized) 而被阻塞的次数(总计 2294 次)。

      • for -1 ms
        阻塞时间的统计方式,-1 ms 表示未记录具体阻塞时长(需启用 JVM 参数 -XX:+PrintBlocked 获取)。

      • waited 28442
        线程在 等待条件触发(如 Object.wait() 或 Condition.await())的次数(总计 28442 次)。

      • for -1 ms
        等待时间的统计方式,-1 ms 表示未记录具体等待时长(需启用 -XX:+PrintWait 获取)。


      线程状态与堆栈跟踪

      java.lang.Thread.State: WAITING
        at sun.misc.Unsafe.park(Native Method)
        - waiting on (a java.util.concurrent.ThreadPoolExecutor$Worker@5cf37a65)
      • Thread.State: WAITING
        线程处于 无限期等待 状态,通常由以下操作触发:

        • Object.wait()(无超时参数)。

        • LockSupport.park()

        • Condition.await()(无超时参数)。

      • sun.misc.Unsafe.park(Native Method)
        线程通过 LockSupport.park() 进入阻塞状态,底层调用 Unsafe.park()

      • waiting on (a java.util.concurrent.ThreadPoolExecutor$Worker@5cf37a65)
        线程正在等待 ThreadPoolExecutor.Worker 对象(线程池工作线程的封装)关联的条件变量(如任务队列非空)。


      关键堆栈分析

      复制代码
      at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
      at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2039)
      at java.util.concurrent.LinkedBlockingQueue.take(LinkedBlockingQueue.java:442)
      at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1074)
      at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1134)
      at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
      at java.lang.Thread.run(Thread.java:750)
      复制代码
      • 核心路径

        1. 线程从 LinkedBlockingQueue.take() 尝试获取任务。

        2. 若队列为空,调用 ConditionObject.await() 进入等待。

        3. 最终通过 LockSupport.park() 挂起线程,直到新任务到达。


      性能问题诊断

      1. 高 waited 次数(28442 次)
      • 可能原因

        • 线程池任务队列长期为空,工作线程频繁等待新任务。

        • 任务生产速度不足(如上游系统吞吐量低)。

        • 线程池配置不合理(核心线程数过多,超出实际需求)。

      2. 高 blocked 次数(2294 次)
      • 可能原因

        • 线程池内部锁竞争(如 Worker 线程争用任务队列)。

        • 共享资源(如数据库连接池)的同步访问冲突。

      3. CPU 时间分配
      • 用户态耗时占比
        usr / cpu ≈ 644.02 / 692.64 ≈ 93%,表明线程主要执行用户代码,而非系统调用。若应用为计算密集型,此比例为正常现象。


      优化建议

      1. 线程池配置优化
      • 调整核心线程数
        若队列长期为空,减少 corePoolSize,避免线程闲置。

        复制代码
        new ThreadPoolExecutor(
            corePoolSize,   // 根据负载动态调整(如使用动态线程池框架)
            maxPoolSize,
            keepAliveTime,
            TimeUnit.SECONDS,
            new LinkedBlockingQueue<>(capacity)
        );
        复制代码
      2. 任务队列监控
      • 检查队列容量
        若使用无界队列(如 LinkedBlockingQueue 未指定容量),可能导致内存溢出,建议改为有界队列。

      • 监控队列堆积
        通过 JMX 或 ThreadPoolExecutor 的 getQueue().size() 实时观察任务积压情况。

      3. 减少锁竞争
      • 使用无锁数据结构
        替换 LinkedBlockingQueue 为 ConcurrentLinkedQueue(需配合非阻塞任务调度逻辑)。

      • 分离读写操作
        若共享资源访问频繁,使用读写锁(ReentrantReadWriteLock)替代独占锁。

问题解决:

  根据截图中的线程栈调用过程,可以定位到项目代码执行调用的地方,发现调用的地方是频繁批量更新redis缓存值得,且每次都是单独一条设置更新得。因此很快推测出来,是这个调用得地方在频繁更新redis缓存值时,导致服务中redis得连接数不够了,因此将代码中更新redis值得方式,使用管道得方式进行更新设置,问题得以解决。

   

复制代码
public ValueOperations<String, T> setCacheObject(String key, T value) {
        ValueOperations<String, T> operation = redisTemplate.opsForValue();
        operation.set(key, value);
        return operation;
    }

    public void pipelineSetCacheObjects(Map<String, BigDecimal> keyValueMap, Integer timeout, TimeUnit timeUnit) {
        redisTemplate.executePipelined((RedisCallback<Object>) connection -> {
            // 获取键值序列化器(直接从RedisTemplate中获取)
            RedisSerializer<String> keySerializer = (RedisSerializer<String>) redisTemplate.getKeySerializer();
            RedisSerializer<BigDecimal> valueSerializer = (RedisSerializer<BigDecimal>) redisTemplate.getValueSerializer();

            keyValueMap.forEach((key, value) -> {
                // 序列化键值
                byte[] keyBytes = keySerializer.serialize(key);
                byte[] valueBytes = valueSerializer.serialize(value);

                if (keyBytes != null && valueBytes != null) {
                    if (timeout != null && timeUnit != null) {
                        connection.setEx(keyBytes, timeUnit.toSeconds(timeout), valueBytes);
                    } else {
                        connection.set(keyBytes, valueBytes);
                    }
                }
            });
            return null;
        });
    }
复制代码

 

 

 
原创作者: zjdxr-up 转载于: https://www.cnblogs.com/zjdxr-up/p/18869766
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值