hive udaf_Hive UDAF 函数的编写

本文介绍了Hive中的用户自定义聚集函数(UDAF)概念,重点讨论了GenericUDAF的使用,包括`AbstractGenericUDAFResolver`和`GenericUDAFEvaluator`两个关键抽象类。通过一个计算名字字符总数的例子,详细解释了UDAF的生命周期,如PARTIAL1、PARTIAL2、FINAL和COMPLETE模式,以及如何处理数据的迭代、合并和终止。
摘要由CSDN通过智能技术生成

UDAF是Hive中用户自定义的聚集函数,Hive内置UDAF函数包括有sum()与count(),UDAF实现有简单与通用两种方式,简单UDAF因为使用Java反射导致性能损失,而且有些特性不能使用,已经被弃用了;在这篇博文中我们将关注Hive中自定义聚类函数-GenericUDAF,UDAF开发主要涉及到以下两个抽象类:

点击(此处)折叠或打开

org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver

org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator

如果你想浏览代码:fork it on Github:https://github.com/rathboma/hive-extension-examples

示例数据准备

首先先创建一张包含示例数据的表:people,该表只有name一列,该列中包含了一个或多个名字,该表数据保存在people.txt文件中。

点击(此处)折叠或打开

~$ cat ./people.txt

John Smith

John and Ann White

Ted Green

Dorothy

把该文件上载到HDFS目录/user/matthew/people中:

点击(此处)折叠或打开

hadoop fs -mkdir people

hadoop fs -put ./people.txt people

下面要创建Hive外部表,在Hive shell中执行

点击(此处)折叠或打开

CREATE EXTERNAL TABLE people (name string)

ROW FORMAT DELIMITED FIELDS

TERMINATED BY '\t'

ESCAPED BY ''

LINES TERMINATED BY '\n'

STORED AS TEXTFILE

LOCATION '/user/matthew/people';

相关抽象类介绍

创建一个GenericUDAF必须先了解以下两个抽象类:

点击(此处)折叠或打开

org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver

org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator

为了更好理解上述抽象类的API,要记住hive只是mapreduce函数,只不过hive已经帮助我们写好并隐藏mapreduce,向上提供简洁的sql函数,所以我们要结合Mapper、Combiner与Reducer来帮助我们理解这个函数。要记住在hadoop集群中有若干台机器,在不同的机器上Mapper与Reducer任务独立运行。

所以大体上来说,这个UDAF函数读取数据(mapper),聚集一堆mapper输出到部分聚集结果(combiner),并且最终创建一个最终的聚集结果(reducer)。因为我们跨域多个combiner进行聚集,所以我们需要保存部分聚集结果。

AbstractGenericUDAFResolver

Resolver很简单,要覆盖实现下面方法,该方法会根据sql传人的参数数据格式指定调用哪个Evaluator进行处理。

点击(此处)折叠或打开

public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException;

GenericUDAFEvaluator

UDAF逻辑处理主要发生在Evaluator中,要实现该抽象类的几个方法。

在理解Evaluator之前,必须先理解objectInspector接口与GenericUDAFEvaluator中的内部类Model。

ObjectInspector

作用主要是解耦数据使用与数据格式,使得数据流在输入输出端切换不同的输入输出格式,不同的Operator上使用不同的格式。可以参考这两篇文章:first post on Hive UDFs、Hive中ObjectInspector的作用,里面有关于objectinspector的介绍。

Model

Model代表了UDAF在mapreduce的各个阶段。

点击(此处)折叠或打开

public static enum Mode {

/**

* PARTIAL1: 这个是mapreduce的map阶段:从原始数据到部分数据聚合

* 将会调用iterate()和terminatePartial()

*/

PARTIAL1,

/**

* PARTIAL2: 这个是mapreduce的map端的Combiner阶段,负责在map端合并map的数据::从部分数据聚合到部分数据聚合:

* 将会调用merge() 和 terminatePartial()

*/

PARTIAL2,

/**

* FINAL: mapreduce的reduce阶段:从部分数据的聚合到完全聚合

* 将会调用merge()和terminate()

*/

FINAL,

/**

* COMPLETE: 如果出现了这个阶段,表示mapreduce只有map,没有reduce,所以map端就直接出结果了:从原始数据直接到完全聚合

* 将会调用 iterate()和terminate()

*/

COMPLETE

};

一般情况下,完整的UDAF逻辑是一个mapreduce过程,如果有mapper和reducer,就会经历PARTIAL1(mapper),FINAL(reducer),如果还有combiner,那就会经历PARTIAL1(mapper),PARTIAL2(combiner),FINAL(reducer)。

而有一些情况下的mapreduce,只有mapper,而没有reducer,所以就会只有COMPLETE阶段,这个阶段直接输入原始数据,出结果。

点击(此处)折叠或打开

GenericUDAFEvaluator的方法

// 确定各个阶段输入输出参数的数据格式ObjectInspectors

public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException;

// 保存数据聚集结果的类

abstract AggregationBuffer getNewAggregationBuffer() throws HiveException;

// 重置聚集结果

public void reset(AggregationBuffer agg) throws HiveException;

// map阶段,迭代处理输入sql传过来的列数据

public void iterate(AggregationBuffer agg, Object[] parameters) throws HiveException;

// map与combiner结束返回结果,得到部分数据聚集结果

public Object terminatePartial(AggregationBuffer agg) throws HiveException;

// combiner合并map返回的结果,还有reducer合并mapper或combiner返回的结果。

public void merge(AggregationBuffer agg, Object partial) throws HiveException;

// reducer阶段,输出最终结果

public Object terminate(AggregationBuffer agg) throws HiveException;

图解Model与Evaluator关系

实例

下面将讲述一个聚集函数UDAF的实例,我们将计算people这张表中的name列字母的个数。

下面的函数代码是计算指定列中字符的总数(包括空格)

pom文件如下:

点击(此处)折叠或打开

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

4.0.0

TotalNumOfLetters

com.xxxx.udaf

1.0-SNAPSHOT

org.apache.hive

hive-exec

2.6.0

org.apache.hadoop

hadoop-client

2.6.0

org.apache.maven.plugins

maven-jar-plugin

com.xxxx.udaf.xxxx

com.jolira

onejar-maven-plugin

1.4.4

true

onejar

one-jar

org.apache.maven.plugins

maven-compiler-plugin

7

7

代码

点击(此处)折叠或打开

package com.xxxx.udaf;

import org.apache.hadoop.hive.ql.exec.Description;

import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;

import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;

import org.apache.hadoop.hive.ql.metadata.HiveException;

import org.apache.hadoop.hive.ql.parse.SemanticException;

import org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver;

import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator;

import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;

import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;

import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;

import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;

import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils;

@Description(name = "letters", value = "__FUNC__(expr) - return the total count chars of the column(返回该列中所有字符串的字符总数)")

public class TotalNumOfLettersGenericUDAF extends AbstractGenericUDAFResolver {

@Override

public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException {

if (parameters.length != 1) { // 判断参数长度

throw new UDFArgumentLengthException("Exactly one argument is expected, but " +

parameters.length + " was passed!");

}

ObjectInspector objectInspector = TypeInfoUtils.getStandardJavaObjectInspectorFromTypeInfo(parameters[0]);

if (objectInspector.getCategory() != ObjectInspector.Category.PRIMITIVE) { // 是不是标准的java Object的primitive类型

throw new UDFArgumentTypeException(0, "Argument type must be PRIMARY. but " +

objectInspector.getCategory().name() + " was passed!");

}

// 如果是标准的java Object的primitive类型,说明可以进行类型转换

PrimitiveObjectInspector in putOI = (PrimitiveObjectInspector) objectInspector;

// 如果是标准的java Object的primitive类型,判断是不是string类型,因为参数只接受string类型

if (in putOI.getPrimitiveCategory() != PrimitiveObjectInspector.PrimitiveCategory.STRING) {

throw new UDFArgumentTypeException(0, "Argument type must be Strig, but " +

in putOI.getPrimitiveCategory().name() + " was passed!");

}

return new TotalNumOfLettersEvaluator();

}

public static class TotalNumOfLettersEvaluator extends GenericUDAFEvaluator {

PrimitiveObjectInspector in putIO;

ObjectInspector outputIO;

PrimitiveObjectInspector IntegerIO;

int total = 0;

@Override

public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException {

assert (parameters.length == 1);

super.init(m, parameters);

/**

* PARTIAL1: 这个是mapreduce的map阶段:从原始数据到部分数据聚合

* 将会调用iterate()和terminatePartial()

* PARTIAL2: 这个是mapreduce的map端的Combiner阶段,负责在map端合并map的数据::从部分数据聚合到部分数据聚合:

* 将会调用merge() 和 terminatePartial()

* FINAL: mapreduce的reduce阶段:从部分数据的聚合到完全聚合

* 将会调用merge()和terminate()

* COMPLETE: 如果出现了这个阶段,表示mapreduce只有map,没有reduce,所以map端就直接出结果了:从原始数据直接到完全聚合

* 将会调用 iterate()和terminate()

*/

//map阶段读取sql列,输入为String基础数据格式

if (m == Mode.PARTIAL1 || m == Mode.COMPLETE) {

in putIO = (PrimitiveObjectInspector) parameters[0];

} else { //其余阶段,输入为Integer基础数据格式

IntegerIO = (PrimitiveObjectInspector) parameters[0];

}

// 指定各个阶段输出数据格式都为Integer类型

outputIO = ObjectInspectorFactory.getReflectionObjectInspector(Integer.class,

ObjectInspectorFactory.ObjectInspectorOptions.JAVA);

return outputIO;

}

/**

* 存储当前字符总数的类

*/

static class LetterSumAgg implements AggregationBuffer {

int sum = 0;

void add(int num) {

sum += num;

}

}

@Override

public AggregationBuffer getNewAggregationBuffer() throws HiveException {

LetterSumAgg result = new LetterSumAgg();

return result;

}

@Override

public void reset(AggregationBuffer aggregationBuffer) throws HiveException {

LetterSumAgg myAgg = new LetterSumAgg();

}

private boolean warned = false;

@Override

public void iterate(AggregationBuffer agg, Object[] parameters) throws HiveException {

assert (parameters.length == 1);

if (parameters[0] != null) {

LetterSumAgg myAgg = (LetterSumAgg) agg;

Object p = in putIO.getPrimitiveJavaObject(parameters[0]);

myAgg.add(String.valueOf(p).length());

}

}

@Override

public Object terminatePartial(AggregationBuffer agg) throws HiveException {

LetterSumAgg myAgg = (LetterSumAgg) agg;

total += myAgg.sum;

return total;

}

@Override

public void merge(AggregationBuffer agg, Object partial) throws HiveException {

if (partial != null) {

LetterSumAgg myAgg1 = (LetterSumAgg) agg;

Integer partialSum = (Integer) IntegerIO.getPrimitiveJavaObject(partial);

LetterSumAgg myAgg2 = new LetterSumAgg();

myAgg2.add(partialSum);

myAgg1.add(myAgg2.sum);

}

}

@Override

public Object terminate(AggregationBuffer agg) throws HiveException {

LetterSumAgg myAgg = (LetterSumAgg) agg;

total = myAgg.sum;

return myAgg.sum;

}

}

}

使用自定义函数

点击(此处)折叠或打开

ADD JAR ./hive-extension-examples-master/target/hive-extensions-1.0-SNAPSHOT-jar-with-dependencies.jar;

CREATE TEMPORARY FUNCTION letters as 'com.xxxx.udaf.TotalNumOfLettersGenericUDAF';

SELECT letters(name) FROM people;

OK

44

Time taken: 20.688 seconds

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值