UDAF是Hive中用户自定义的聚集函数,Hive内置UDAF函数包括有sum()与count(),UDAF实现有简单与通用两种方式,简单UDAF因为使用Java反射导致性能损失,而且有些特性不能使用,已经被弃用了;在这篇博文中我们将关注Hive中自定义聚类函数-GenericUDAF,UDAF开发主要涉及到以下两个抽象类:
点击(此处)折叠或打开
org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver
org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator
如果你想浏览代码:fork it on Github:https://github.com/rathboma/hive-extension-examples
示例数据准备
首先先创建一张包含示例数据的表:people,该表只有name一列,该列中包含了一个或多个名字,该表数据保存在people.txt文件中。
点击(此处)折叠或打开
~$ cat ./people.txt
John Smith
John and Ann White
Ted Green
Dorothy
把该文件上载到HDFS目录/user/matthew/people中:
点击(此处)折叠或打开
hadoop fs -mkdir people
hadoop fs -put ./people.txt people
下面要创建Hive外部表,在Hive shell中执行
点击(此处)折叠或打开
CREATE EXTERNAL TABLE people (name string)
ROW FORMAT DELIMITED FIELDS
TERMINATED BY '\t'
ESCAPED BY ''
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
LOCATION '/user/matthew/people';
相关抽象类介绍
创建一个GenericUDAF必须先了解以下两个抽象类:
点击(此处)折叠或打开
org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver
org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator
为了更好理解上述抽象类的API,要记住hive只是mapreduce函数,只不过hive已经帮助我们写好并隐藏mapreduce,向上提供简洁的sql函数,所以我们要结合Mapper、Combiner与Reducer来帮助我们理解这个函数。要记住在hadoop集群中有若干台机器,在不同的机器上Mapper与Reducer任务独立运行。
所以大体上来说,这个UDAF函数读取数据(mapper),聚集一堆mapper输出到部分聚集结果(combiner),并且最终创建一个最终的聚集结果(reducer)。因为我们跨域多个combiner进行聚集,所以我们需要保存部分聚集结果。
AbstractGenericUDAFResolver
Resolver很简单,要覆盖实现下面方法,该方法会根据sql传人的参数数据格式指定调用哪个Evaluator进行处理。
点击(此处)折叠或打开
public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException;
GenericUDAFEvaluator
UDAF逻辑处理主要发生在Evaluator中,要实现该抽象类的几个方法。
在理解Evaluator之前,必须先理解objectInspector接口与GenericUDAFEvaluator中的内部类Model。
ObjectInspector
作用主要是解耦数据使用与数据格式,使得数据流在输入输出端切换不同的输入输出格式,不同的Operator上使用不同的格式。可以参考这两篇文章:first post on Hive UDFs、Hive中ObjectInspector的作用,里面有关于objectinspector的介绍。
Model
Model代表了UDAF在mapreduce的各个阶段。
点击(此处)折叠或打开
public static enum Mode {
/**
* PARTIAL1: 这个是mapreduce的map阶段:从原始数据到部分数据聚合
* 将会调用iterate()和terminatePartial()
*/
PARTIAL1,
/**
* PARTIAL2: 这个是mapreduce的map端的Combiner阶段,负责在map端合并map的数据::从部分数据聚合到部分数据聚合:
* 将会调用merge() 和 terminatePartial()
*/
PARTIAL2,
/**
* FINAL: mapreduce的reduce阶段:从部分数据的聚合到完全聚合
* 将会调用merge()和terminate()
*/
FINAL,
/**
* COMPLETE: 如果出现了这个阶段,表示mapreduce只有map,没有reduce,所以map端就直接出结果了:从原始数据直接到完全聚合
* 将会调用 iterate()和terminate()
*/
COMPLETE
};
一般情况下,完整的UDAF逻辑是一个mapreduce过程,如果有mapper和reducer,就会经历PARTIAL1(mapper),FINAL(reducer),如果还有combiner,那就会经历PARTIAL1(mapper),PARTIAL2(combiner),FINAL(reducer)。
而有一些情况下的mapreduce,只有mapper,而没有reducer,所以就会只有COMPLETE阶段,这个阶段直接输入原始数据,出结果。
点击(此处)折叠或打开
GenericUDAFEvaluator的方法
// 确定各个阶段输入输出参数的数据格式ObjectInspectors
public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException;
// 保存数据聚集结果的类
abstract AggregationBuffer getNewAggregationBuffer() throws HiveException;
// 重置聚集结果
public void reset(AggregationBuffer agg) throws HiveException;
// map阶段,迭代处理输入sql传过来的列数据
public void iterate(AggregationBuffer agg, Object[] parameters) throws HiveException;
// map与combiner结束返回结果,得到部分数据聚集结果
public Object terminatePartial(AggregationBuffer agg) throws HiveException;
// combiner合并map返回的结果,还有reducer合并mapper或combiner返回的结果。
public void merge(AggregationBuffer agg, Object partial) throws HiveException;
// reducer阶段,输出最终结果
public Object terminate(AggregationBuffer agg) throws HiveException;
图解Model与Evaluator关系
实例
下面将讲述一个聚集函数UDAF的实例,我们将计算people这张表中的name列字母的个数。
下面的函数代码是计算指定列中字符的总数(包括空格)
pom文件如下:
点击(此处)折叠或打开
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
4.0.0
TotalNumOfLetters
com.xxxx.udaf
1.0-SNAPSHOT
org.apache.hive
hive-exec
2.6.0
org.apache.hadoop
hadoop-client
2.6.0
org.apache.maven.plugins
maven-jar-plugin
com.xxxx.udaf.xxxx
com.jolira
onejar-maven-plugin
1.4.4
true
onejar
one-jar
org.apache.maven.plugins
maven-compiler-plugin
7
7
代码
点击(此处)折叠或打开
package com.xxxx.udaf;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils;
@Description(name = "letters", value = "__FUNC__(expr) - return the total count chars of the column(返回该列中所有字符串的字符总数)")
public class TotalNumOfLettersGenericUDAF extends AbstractGenericUDAFResolver {
@Override
public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException {
if (parameters.length != 1) { // 判断参数长度
throw new UDFArgumentLengthException("Exactly one argument is expected, but " +
parameters.length + " was passed!");
}
ObjectInspector objectInspector = TypeInfoUtils.getStandardJavaObjectInspectorFromTypeInfo(parameters[0]);
if (objectInspector.getCategory() != ObjectInspector.Category.PRIMITIVE) { // 是不是标准的java Object的primitive类型
throw new UDFArgumentTypeException(0, "Argument type must be PRIMARY. but " +
objectInspector.getCategory().name() + " was passed!");
}
// 如果是标准的java Object的primitive类型,说明可以进行类型转换
PrimitiveObjectInspector in putOI = (PrimitiveObjectInspector) objectInspector;
// 如果是标准的java Object的primitive类型,判断是不是string类型,因为参数只接受string类型
if (in putOI.getPrimitiveCategory() != PrimitiveObjectInspector.PrimitiveCategory.STRING) {
throw new UDFArgumentTypeException(0, "Argument type must be Strig, but " +
in putOI.getPrimitiveCategory().name() + " was passed!");
}
return new TotalNumOfLettersEvaluator();
}
public static class TotalNumOfLettersEvaluator extends GenericUDAFEvaluator {
PrimitiveObjectInspector in putIO;
ObjectInspector outputIO;
PrimitiveObjectInspector IntegerIO;
int total = 0;
@Override
public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException {
assert (parameters.length == 1);
super.init(m, parameters);
/**
* PARTIAL1: 这个是mapreduce的map阶段:从原始数据到部分数据聚合
* 将会调用iterate()和terminatePartial()
* PARTIAL2: 这个是mapreduce的map端的Combiner阶段,负责在map端合并map的数据::从部分数据聚合到部分数据聚合:
* 将会调用merge() 和 terminatePartial()
* FINAL: mapreduce的reduce阶段:从部分数据的聚合到完全聚合
* 将会调用merge()和terminate()
* COMPLETE: 如果出现了这个阶段,表示mapreduce只有map,没有reduce,所以map端就直接出结果了:从原始数据直接到完全聚合
* 将会调用 iterate()和terminate()
*/
//map阶段读取sql列,输入为String基础数据格式
if (m == Mode.PARTIAL1 || m == Mode.COMPLETE) {
in putIO = (PrimitiveObjectInspector) parameters[0];
} else { //其余阶段,输入为Integer基础数据格式
IntegerIO = (PrimitiveObjectInspector) parameters[0];
}
// 指定各个阶段输出数据格式都为Integer类型
outputIO = ObjectInspectorFactory.getReflectionObjectInspector(Integer.class,
ObjectInspectorFactory.ObjectInspectorOptions.JAVA);
return outputIO;
}
/**
* 存储当前字符总数的类
*/
static class LetterSumAgg implements AggregationBuffer {
int sum = 0;
void add(int num) {
sum += num;
}
}
@Override
public AggregationBuffer getNewAggregationBuffer() throws HiveException {
LetterSumAgg result = new LetterSumAgg();
return result;
}
@Override
public void reset(AggregationBuffer aggregationBuffer) throws HiveException {
LetterSumAgg myAgg = new LetterSumAgg();
}
private boolean warned = false;
@Override
public void iterate(AggregationBuffer agg, Object[] parameters) throws HiveException {
assert (parameters.length == 1);
if (parameters[0] != null) {
LetterSumAgg myAgg = (LetterSumAgg) agg;
Object p = in putIO.getPrimitiveJavaObject(parameters[0]);
myAgg.add(String.valueOf(p).length());
}
}
@Override
public Object terminatePartial(AggregationBuffer agg) throws HiveException {
LetterSumAgg myAgg = (LetterSumAgg) agg;
total += myAgg.sum;
return total;
}
@Override
public void merge(AggregationBuffer agg, Object partial) throws HiveException {
if (partial != null) {
LetterSumAgg myAgg1 = (LetterSumAgg) agg;
Integer partialSum = (Integer) IntegerIO.getPrimitiveJavaObject(partial);
LetterSumAgg myAgg2 = new LetterSumAgg();
myAgg2.add(partialSum);
myAgg1.add(myAgg2.sum);
}
}
@Override
public Object terminate(AggregationBuffer agg) throws HiveException {
LetterSumAgg myAgg = (LetterSumAgg) agg;
total = myAgg.sum;
return myAgg.sum;
}
}
}
使用自定义函数
点击(此处)折叠或打开
ADD JAR ./hive-extension-examples-master/target/hive-extensions-1.0-SNAPSHOT-jar-with-dependencies.jar;
CREATE TEMPORARY FUNCTION letters as 'com.xxxx.udaf.TotalNumOfLettersGenericUDAF';
SELECT letters(name) FROM people;
OK
44
Time taken: 20.688 seconds
本文介绍了Hive中的用户自定义聚集函数(UDAF)概念,重点讨论了GenericUDAF的使用,包括`AbstractGenericUDAFResolver`和`GenericUDAFEvaluator`两个关键抽象类。通过一个计算名字字符总数的例子,详细解释了UDAF的生命周期,如PARTIAL1、PARTIAL2、FINAL和COMPLETE模式,以及如何处理数据的迭代、合并和终止。
1411

被折叠的 条评论
为什么被折叠?



