matlab范德蒙,matlab有效生成范德蒙多矩阵

本文探讨了几种在MATLAB中生成范德蒙德矩阵的不同方法,包括直接使用For循环、预先分配内存以及使用cumprod等函数的优化方法。通过测试,发现尽管完全向量化的方法在小规模数组中表现最佳,但在处理大规模数据时,预分配内存结合For循环的策略(如vander3.m)速度最快。因此,选择最佳方法取决于矩阵的大小和内存管理需求。
摘要由CSDN通过智能技术生成

《matlab有效生成范德蒙多矩阵》由会员分享,可在线阅读,更多相关《matlab有效生成范德蒙多矩阵(7页珍藏版)》请在人人文库网上搜索。

1、有很多线性代数问题都需要生成范德蒙多矩阵,对于一个向量x,它的范德蒙多矩阵具有如下的形式:V=x1m x1(m-1)x1,1;x2m,x2(m-1),1;.;xnm,xn(m-1)1如上所示,V的各列对x的元素逐个进行了乘方.下面我们将讨论生成此种矩阵的多种方法.首先想到的第一种方法就是直接使用For 循环,具体情况如下面给出的脚本M文件所示.%vander1.m%construct a Vandermonde matrix x=(1:6); %conlumn vector for input data m=5; %highest power to compute V=;for I=1:m+1。

2、 %build V conlumn by column V=V x.(m+1-i);end在上面给出的方法中,矩阵V是逐列构建起来的,在最开始矩阵是一个空矩阵.这种方法存在许多缺点,最明显的缺点就是在每次进入循环的时候都要对V重新分配内存.因为向量化的第一步应该是预先为V分配内存,如下面给出的M文件所示.%vander2.m%construct a Vandermonde matrix.x=(1:6); %conlumn vector for input data m=5; %highest power to compute n=length(x); %number of elements i。

3、n xV=ones(n,m+1); %preallocate memory for result for i=1:m %build V column by columnV(:,i)=x.(m+1-i);end在这里V被作为一个全1的矩阵进行初始化.然后在For 循环中对的各个列进行赋值.在For 循环中,最后一列未被赋值.这是因为最后一列的元

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值