bfs拓扑排序,课程表

你这个学期必须选修 numCourse 门课程,记为 0 到 numCourse-1 。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们:[0,1]
给定课程总量以及它们的先决条件,请你判断是否可能完成所有课程的学习?
示例 1:
输入: 2, [[1,0]]
输出: true
解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。
示例 2:
输入: 2, [[1,0],[0,1]]
输出: false
解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成​课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。
提示:
输入的先决条件是由 边缘列表 表示的图形,而不是 邻接矩阵 。详情请参见图的表示法。
你可以假定输入的先决条件中没有重复的边。
1 <= numCourses <= 10^5
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/course-schedule
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

用拓扑排序和bfs。
首先prerequisites保存了所有的有向边,问题转换成对一个有向图求他是否有环。
邻接表很容易知道各点的邻接,邻接矩阵很容易知道两点是否邻接,所以转换成邻接表更适合场景。
bfs的思路就是把入度为0的节点全部入队。

class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        if(prerequisites.size()==0)
            return true;
        //不能有环,拓扑排序
        map<int, set<int> > adjcent;//邻接表
        vector<int> innums(numCourses, 0);//入度
        queue<int> q;
        for(int i=0;i<prerequisites.size();i++){
            int a = prerequisites[i][0];//弧头
            int b = prerequisites[i][1];//前置课程 弧尾
            ++innums[a];
            adjcent[b].insert(a);
        }
        //无环的拓扑排序必定有入度为0 的点
        for(int i=0;i<numCourses;i++){
            if(innums[i]==0){
                q.push(i);
            }
        }
        int count = 0;
        while(!q.empty()){
            int head = q.front();
            q.pop();
            //count 入度为0的点个数
            count++;
            set<int> x = adjcent[head];
            //入度为0 入队
            for(auto xiter : x){
                innums[xiter]--;
                if(innums[xiter]==0)
                    q.push(xiter);
            }
        }
        //前置课程消除后,所有的课程都入度为0
        return count == numCourses;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值