你这个学期必须选修 numCourse 门课程,记为 0 到 numCourse-1 。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们:[0,1]
给定课程总量以及它们的先决条件,请你判断是否可能完成所有课程的学习?
示例 1:
输入: 2, [[1,0]]
输出: true
解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。
示例 2:
输入: 2, [[1,0],[0,1]]
输出: false
解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。
提示:
输入的先决条件是由 边缘列表 表示的图形,而不是 邻接矩阵 。详情请参见图的表示法。
你可以假定输入的先决条件中没有重复的边。
1 <= numCourses <= 10^5
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/course-schedule
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
用拓扑排序和bfs。
首先prerequisites保存了所有的有向边,问题转换成对一个有向图求他是否有环。
邻接表很容易知道各点的邻接,邻接矩阵很容易知道两点是否邻接,所以转换成邻接表更适合场景。
bfs的思路就是把入度为0的节点全部入队。
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
if(prerequisites.size()==0)
return true;
//不能有环,拓扑排序
map<int, set<int> > adjcent;//邻接表
vector<int> innums(numCourses, 0);//入度
queue<int> q;
for(int i=0;i<prerequisites.size();i++){
int a = prerequisites[i][0];//弧头
int b = prerequisites[i][1];//前置课程 弧尾
++innums[a];
adjcent[b].insert(a);
}
//无环的拓扑排序必定有入度为0 的点
for(int i=0;i<numCourses;i++){
if(innums[i]==0){
q.push(i);
}
}
int count = 0;
while(!q.empty()){
int head = q.front();
q.pop();
//count 入度为0的点个数
count++;
set<int> x = adjcent[head];
//入度为0 入队
for(auto xiter : x){
innums[xiter]--;
if(innums[xiter]==0)
q.push(xiter);
}
}
//前置课程消除后,所有的课程都入度为0
return count == numCourses;
}
};
588

被折叠的 条评论
为什么被折叠?



