wps生成正态分布的随机数_用matlab生成服从某一分布的随机数

最近统计模拟课在学模拟生成服从某一分布的随机数,在此做一个整理。

1.生成离散型随机变量

1.1生成几何分布随机数

1.1.1inverse transform method

对于形如

的概率密度函数,因为
,其中
,所以

几何分布的密度函数为:

等价于

U = rand(1,1000)
X = floor(log(U)/log(0.6)) + 1
histogram(X)

c110c0acc822ef156fc16a65dd5035f3.png

1.2生成泊松分布随机数

X = []
for j = 1 : 1000
    i = 0;    lambda = 1;    a = exp(-lambda);    F = a;
    for i=1 :1000
        if rand(1) < F
            x = i;
            break;
        else
            a = lambda * a / (i + 1);
            F = F + a;
        end
    end
    X = [X, x]
end
histogram(X)

eb8d722622a13a43833eda3b16b75029.png

1.3生成二项分布随机数

n = 1000;
p = 0.4;c = p / (1-p);X = [];
for j = i : 1000
    i = 0;    a = (1-p)^n;    F = a;
    for i = i : 1000
        if rand(1) < F
            x = i;    break;
        else
            a = c * a * (n-i) / (i + 1);    F = F + a;
        end
    end
    X = [X, x];
end
histogram(X)

ada2b9436e4cb3d33ed28f9d98f4d630.png

2.生成连续型随机变量

2.1Inverse Transform Algorithm:

首先介绍一个算法:U是一个服从(0,1)上均匀分布的随机数,令

,那么有:

2.1.1生成指数分布随机数

lam = 2;
uni = rand(1, 1000);
X = -log(uni) / lam;
histogram(X)

b7fbdea12b93a70f8244ab6910c92556.png

2.2the rejection method

该算法要求首先有一个分布函数为

的随机变量,然后利用这个随机变量去simulate另一个随机变量。具体做法是:

9b3f43d4b207cce20a2e3c7b9e556be9.png

例如:

,考虑
,接下来找一个最小的c, s.t.
。因此,只需求
的一阶导数=0。解得
X = [];
for j = i : 1000
    for i = 1 : 1000
        U1 = rand(1);   U2 = rand(1);
        if U2 <= 256 * U1 * (1 - U1)^3 / 27
            x = U1;
            break;
        end
    end
    X = [X, x];
end
histogram(X)

77f2b7b2a33cda78efa501ef9888797b.png

2.3生成正态分布随机数

Z = [];
for j = 1 : 1000
    for i = 1 : 1000
        y1 = -log(rand(1));
        y2 = -log(rand(1));
        if y2 > 0.5 * (y1 - 1)^2
            y = 0.5 * (y1 - 1)^2;
            break;
        end
    end
    U = rand(1);
    if U <= 0.5
        z = y1;
    else
        z = -y1;
    end
    Z = [Z, z];
end
histogram(Z)
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页