python素数算法,AKS素数的算法在Python

A few years ago, it was proven that PRIMES is in P. Are there any algorithms implementing their primality test in Python? I wanted to run some benchmarks with a naive generator and see for myself how fast it is. I'd implement it myself, but I don't understand the paper enough yet to do that.

解决方案

Yes, go look at AKS test for primes page on rosettacode.org

def expand_x_1(p):

ex = [1]

for i in range(p):

ex.append(ex[-1] * -(p-i) / (i+1))

return ex[::-1]

def aks_test(p):

if p < 2: return False

ex = expand_x_1(p)

ex[0] += 1

return not any(mult % p for mult in ex[0:-1])

print('# p: (x-1)^p for small p')

for p in range(12):

print('%3i: %s' % (p, ' '.join('%+i%s' % (e, ('x^%i' % n) if n else '')

for n,e in enumerate(expand_x_1(p)))))

print('\n# small primes using the aks test')

print([p for p in range(101) if aks_test(p)])

and the output is:

# p: (x-1)^p for small p

0: +1

1: -1 +1x^1

2: +1 -2x^1 +1x^2

3: -1 +3x^1 -3x^2 +1x^3

4: +1 -4x^1 +6x^2 -4x^3 +1x^4

5: -1 +5x^1 -10x^2 +10x^3 -5x^4 +1x^5

6: +1 -6x^1 +15x^2 -20x^3 +15x^4 -6x^5 +1x^6

7: -1 +7x^1 -21x^2 +35x^3 -35x^4 +21x^5 -7x^6 +1x^7

8: +1 -8x^1 +28x^2 -56x^3 +70x^4 -56x^5 +28x^6 -8x^7 +1x^8

9: -1 +9x^1 -36x^2 +84x^3 -126x^4 +126x^5 -84x^6 +36x^7 -9x^8 +1x^9

10: +1 -10x^1 +45x^2 -120x^3 +210x^4 -252x^5 +210x^6 -120x^7 +45x^8 -10x^9 +1x^10

11: -1 +11x^1 -55x^2 +165x^3 -330x^4 +462x^5 -462x^6 +330x^7 -165x^8 +55x^9 -11x^10 +1x^11

# small primes using the aks test

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值