二值化_深度实践OCR——二值化方法

本文详细介绍了二值化的全局阈值法,包括固定阈值与Otsu算法,探讨了它们的优缺点。接着讲解了局部阈值法,如自适应阈值、Niblack算法和Sauvola算法,以及它们在处理图像时的适应性和局限性。此外,还提及了腐蚀、膨胀、开运算和闭运算等其他二值化方法在图像处理中的应用。

一、全局阈值法

1.固定阈值方法

该方法是对于输入图像中的所有像素点统一使用同一个固定阈值。其基本思想如下:

c636cd5b8eb0a97ea2e20888f8c6013d.png

其中,T为全局阈值。

缺点:很难为不同的输入图像确定最佳阈值。

2.Otsu算法

Otsu算法又称最大类间方差法

先明确两个概念:

(1)均值

9f4190af725a052ce67380e3e2e59a0f.png

(2)方差

76ff2e921b279e36baccf5bf66e034d4.png

图像的阈值化处理,就是将图像分为两个部分,高于阈值的部分,和小于阈值的部分。(暂不考虑多阈值的情况)。那么,如果将图像的每一个像素点的强度作为一个数据集合中的单元,那么,阈值化就相当于是一个二分类的问题。

我们假设,大于阈值的类为S1,维度为n1(不考虑秩的问题,实际上就是像素个数),均值为m1;小于阈值的类记为S2,维度为n2,均值为m2。根据前面概率的知识,理想的情况下,对于每一个类,其类内方差应该是很小的。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值