一、全局阈值法
1.固定阈值方法
该方法是对于输入图像中的所有像素点统一使用同一个固定阈值。其基本思想如下:
其中,T为全局阈值。
缺点:很难为不同的输入图像确定最佳阈值。
2.Otsu算法
Otsu算法又称最大类间方差法
先明确两个概念:
(1)均值
(2)方差
图像的阈值化处理,就是将图像分为两个部分,高于阈值的部分,和小于阈值的部分。(暂不考虑多阈值的情况)。那么,如果将图像的每一个像素点的强度作为一个数据集合中的单元,那么,阈值化就相当于是一个二分类的问题。
我们假设,大于阈值的类为S1,维度为n1(不考虑秩的问题,实际上就是像素个数),均值为m1;小于阈值的类记为S2,维度为n2,均值为m2。根据前面概率的知识,理想的情况下,对于每一个类,其类内方差应该是很小的。</

本文详细介绍了二值化的全局阈值法,包括固定阈值与Otsu算法,探讨了它们的优缺点。接着讲解了局部阈值法,如自适应阈值、Niblack算法和Sauvola算法,以及它们在处理图像时的适应性和局限性。此外,还提及了腐蚀、膨胀、开运算和闭运算等其他二值化方法在图像处理中的应用。
最低0.47元/天 解锁文章
780

被折叠的 条评论
为什么被折叠?



