质数表因式分解 c语言,素数表+因式分解+完美数

1 素数

素数即质数,指在大于1的自然数中,除了1和此整数自身外无法被其它自然数整除的数。

1.1 试除法

该方法用于验证一个数是否为素数。例求x是否为素数,只需要验证1到中是否存在一个数位x的约数,即能被x整除。

1.2 Eratosthenes方法

该方法用于高效的求出小于任何数N的所有素数。该方法的原理为先用一个筛子存放所有的数,显然其中最小的为2且为质数,这时可以过滤掉2的任何倍数。紧接着寻找比2大的最小数3,则过滤掉所有3的倍数。如此,比已经找到的质数大的最小数即为素数,然后删除该素数的所有倍数。最终将筛选出所有小于N的素数。

参考代码:

void test()

{

int prime[PRIMEMAX + 1];

for (int i = 2; i < PRIMEMAX; i++)

{

prime[i] = 1;

}

for (int i = 2; i * i <= PRIMEMAX; i++)

{

if (1 == prime[i])

{

for (int j = 2 * i; j <=PRIMEMAX; j++)

{

if (0 == j % i)

{

prime[j] = 0;

}

}

}

}

for (int i = 2; i < PRIMEMAX; i++)

{

if (1 == prime[i])

{

cout<

if (0 == i % 16)

{

cout<

}

}

}

}

2 因式分解

这里的因式分解是指将一个数分解成若干个素数乘积的形式。例如12 = 2 * 2 * 3。算数基本定理证明每个大于1的正整数都可以写成素数的乘积,并且这种乘积的形式是唯一的。因此素数也被称为自然数的“建筑的基石”。可以用以下方法分解N。

2.1 试除法

让N去除从1到的任意数,直到商为1则所有的能被整除的数即为N的一项,若某个数能被整除m次,则N的因式中应该还有m个该数。

例如N=12,则:

N=12能整除2,得6……N的一个因子为2

N=6能整除2,得3……N的一个因子为2

N=3能整除3,得1……N的一个因子为3

因为商为1,则停止运算可得N=12=2*2*3为N的因式分解。

2.2 素数表法

试除法存在的问题为不是所有的被除数都为素数,例如N=30,当整除2和3后,又去试除4,显然这是没有必要的。因此可以预处理一张素数表,继2和3之后去试除5而不再是4。

参考代码如下:

#define MAXNUM110000

int num1;

intprimetable[MAXNUM1];

void prime()

{

int temp[MAXNUM1];

int genprime = 0;

for (int i = 0; i < MAXNUM1; i++)

{

temp[i] = 1;

primetable[i] = 1;

}

for (int i = 2; i < MAXNUM1; i++)

{

if (1 == temp[i])

{

primetable[genprime++] = i;

for (int j = 2*i; j

{

if (0 == j % i)

{

temp[j] = 0;

}

}

}

}

}

void factor()

{

int num = num1;

cout<

for (int i = 0; primetable[i] *primetable[i] <= num;)

{

if (0 == num % primetable[i])

{

cout<

num = num / primetable[i];

}

else

{

++i;

}

}

cout<

}

int main()

{

prime();

factor();

}

3 完美数

如果一个数n,其真约数(比n小的约数)的总和等于n,则称之为完美数。例如6 = 1 + 2 + 3,28 = 1 + 2 + 4 + 7 + 14。

3.1 朴素法

求出数n的所有真约数,然后相加判断是否与n相等即可,若相等则是完美数,反之不是。

3.1 因式分解法

由算数基本定理可得任何数n均可分解为若干素数的乘积,而一个数的所有约束应该为所有这些约数的组合和1。例如n=12=2*2*3的分解素数为2、2以及3,他们的组合数为2、4、6、12,显然与1一起组成了n=12的所有约束。若n为完美数则有n分解的素数的所有组合数的和加上1为n的2倍。例如:

2 * 28 = 1 + 2 + 4 + 7 + 14 + 28 = (20 + 21 + 22)*(70 + 71)

显然等式的右边为用n=28的分解成的素数组成,即若某一个素数x有m个,则组合数中可以包含0、1……m个,对约数的贡献分别为x0, x1……xm。

完美数的求解总共分为三步:

(1) 求出一定数目的素数表

(2) 利用素数表求指定数的因式分解

(3) 利用因式分解求所有真约数和,并判断是否为完美数

参考代码:

#define N 1000

#define P 10000

int prime(int*pNum)

{

int i, j;

int prime[N+1];

for(i = 2; i <= N; i++)

prime[i] = 1;

for(i = 2; i*i <= N; i++)

{

if(prime[i] == 1)

{

for(j = 2*i; j <= N; j++)

{

if(j % i == 0)

prime[j] = 0;

}

}

}

for(i = 2, j = 0; i < N; i++)

{

if(prime[i] == 1)

pNum[j++] = i;

}

return j;

}

int factor(int*table, int num, int* frecord)

{

int i, k;

for(i = 0, k = 0; table[i] * table[i]<= num;)

{

if(num % table[i] == 0)

{

frecord[k] = table[i];

k++;

num /= table[i];

}

else

i++;

}

frecord[k] = num;

return k+1;

}

int fsum(int*farr, int c)

{

int i, r, s, q;

i = 0;

r = 1;

s = 1;

q = 1;

while(i < c)

{

do

{

r *= farr[i];

q += r;

i++;

} while(i < c-1 &&farr[i-1] == farr[i]);

s *= q;

r = 1;

q = 1;

}

return s / 2;

}

int main(void)

{

int ptable[N+1] = {0}; // 储存质数表

int fact[N+1] = {0};     // 储存因式分解结果

int count1, count2, i;

count1 = prime(ptable);

for(i = 0; i <= P; i++)

{

count2 = factor(ptable, i, fact);

if(i == fsum(fact, count2))

printf("Perfect Number:%d\n", i);

}

printf("\n");

return 0;

}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值