sklearn读取html,Scikit-Learn API (tune.sklearn) — Ray v2.0.0.dev0

本文介绍了TuneSearchCV,一种用于模型超参数优化的工具,支持随机搜索、贝叶斯搜索、Tree-Parzen Estimators和HyperOpt等方法。它通过交叉验证选择最佳参数设置,并提供fit、score、预测等功能。重点讲解了如何配置搜索策略、参数分布和早期停止选项。
摘要由CSDN通过智能技术生成

Generic, non-grid search on hyper parameters.

Randomized search is invoked with search_optimization set to

"random" and behaves like scikit-learn’s RandomizedSearchCV.

Bayesian search can be invoked with several values of

search_optimization.

Tree-Parzen Estimators search is invoked with search_optimization

set to "hyperopt", using HyperOpt - http://hyperopt.github.io/hyperopt

All types of search aside from Randomized search require parent

libraries to be installed.

TuneSearchCV implements a “fit” and a “score” method.

It also implements “predict”, “predict_proba”, “decision_function”,

“transform” and “inverse_transform” if they are implemented in the

estimator used.

The parameters of the estimator used to apply these methods are optimized

by cross-validated search over parameter settings.

In contrast to GridSearchCV, not all parameter values are tried out, but

rather a fixed number of parameter settings is sampled from the specified

distributions. The number of parameter settings that are tried is

given by n_trials.

Parameters

estimator (estimator) – This is assumed to implement the

scikit-learn estimator interface. Either estimator needs to

provide a score function, or scoring must be passed.

param_distributions (dict or list or ConfigurationSpace) –

Serves

as the param_distributions parameter in scikit-learn’s

RandomizedSearchCV or as the search_space parameter in

BayesSearchCV.

For randomized search: dictionary with parameters names (string)

as keys and distributions or lists of parameter settings to try

for randomized search.

Distributions must provide a rvs method for sampling (such as

those from scipy.stats.distributions). Ray Tune search spaces

are also supported.

If a list is given, it is sampled uniformly. If a list of dicts is

given, first a dict is sampled uniformly, and then a parameter is

sampled using that dict as above.

For other types of search: dictionary with parameter names (string)

as keys. Values can be

a (lower_bound, upper_bound) tuple (for Real or Integer params)

a (lower_bound, upper_bound, “prior”) tuple (for Real params)

as a list of categories (for Categorical dimensions)

Ray Tune search space (eg. tune.uniform)

"bayesian" (scikit-optimize) also accepts

skopt.space.Dimension instance (Real, Integer or Categorical).

"hyperopt" (HyperOpt) also accepts

an instance of a hyperopt.pyll.base.Apply object.

"bohb" (HpBandSter) also accepts

ConfigSpace.hyperparameters.Hyperparameter instance.

"optuna" (Optuna) also accepts

an instance of a optuna.distributions.BaseDistribution object.

For "bohb" (HpBandSter) it is also possible to pass a

ConfigSpace.ConfigurationSpace object instead of dict or a list.

early_stopping (bool, str or TrialScheduler, optional) –

Option

to stop fitting to a hyperparameter configuration if it performs

poorly. Possible inputs are:

If True, defaults to ASHAScheduler.

A string corresponding to the name of a Tune Trial Scheduler

(i.e., “ASHAScheduler”). To specify parameters of the scheduler,

pass in a scheduler object instead of a string.

Scheduler for executing fit with early stopping. Only a subset

of schedulers are currently supported. The scheduler will only be

used if the estimator supports partial fitting

If None or False, early stopping will not be used.

Unless a HyperBandForBOHB object is passed,

this parameter is ignored for "bohb", as it requires

HyperBandForBOHB.

n_trials (int) – Number of parameter settings that are sampled.

n_trials trades off runtime vs quality of the solution.

Defaults to 10.

scoring (str,callable,list/tuple,dict, orNone) – A single

string or a callable to evaluate the predictions on the test set.

See https://scikit-learn.org/stable/modules/model_evaluation.html

#scoring-parameter for all options.

For evaluating multiple metrics, either give a list/tuple of

(unique) strings or a dict with names as keys and callables as

values.

If None, the estimator’s score method is used. Defaults to None.

n_jobs (int) – Number of jobs to run in parallel. None or -1 means

using all processors. Defaults to None. If set to 1, jobs

will be run using Ray’s ‘local mode’. This can

lead to significant speedups if the model takes < 10 seconds

to fit due to removing inter-process communication overheads.

refit (bool, str, or callable) – Refit an estimator using the

best found parameters on the whole dataset.

For multiple metric evaluation, this needs to be a string denoting

the scorer that would be used to find the best parameters for

refitting the estimator at the end.

The refitted estimator is made available at the best_estimator_

attribute and permits using predict directly on this

GridSearchCV instance.

Also for multiple metric evaluation, the attributes

best_index_, best_score_ and best_params_ will only be

available if refit is set and all of them will be determined

w.r.t this specific scorer. If refit not needed, set to False.

See scoring parameter to know more about multiple metric

evaluation. Defaults to True.

cv (int, cross-validation generator or iterable) –

Determines

the cross-validation splitting strategy.

Possible inputs for cv are:

None, to use the default 5-fold cross validation,

integer, to specify the number of folds in a (Stratified)KFold,

An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, if the estimator is a classifier and y

is either binary or multiclass, StratifiedKFold is used.

In all other cases, KFold is used. Defaults to None.

verbose (int) – Controls the verbosity: 0 = silent, 1 = only status

updates, 2 = status and trial results. Defaults to 0.

random_state (int or RandomState) – Pseudo random number generator

state used for random uniform

sampling from lists of possible values instead of scipy.stats

distributions.

If int, random_state is the seed used by the random number

generator;

If RandomState instance, a seed is sampled from random_state;

If None, the random number generator is the RandomState instance

used by np.random and no seed is provided. Defaults to None.

Ignored when using BOHB.

error_score ('raise'orintorfloat) – Value to assign to the score if

an error occurs in estimator

fitting. If set to ‘raise’, the error is raised. If a numeric value

is given, FitFailedWarning is raised. This parameter does not

affect the refit step, which will always raise the error.

Defaults to np.nan.

return_train_score (bool) – If False, the cv_results_

attribute will not include training scores. Defaults to False.

Computing training scores is used to get insights on how different

parameter settings impact the overfitting/underfitting trade-off.

However computing the scores on the training set can be

computationally expensive and is not strictly required to select

the parameters that yield the best generalization performance.

local_dir (str) – A string that defines where checkpoints and logs will

be stored. Defaults to “~/ray_results”

name (str)– Name of experiment(for Ray Tune) –

max_iters (int) – Indicates the maximum number of epochs to run for each

hyperparameter configuration sampled (specified by n_trials).

This parameter is used for early stopping. Defaults to 1.

Depending on the classifier type provided, a resource parameter

(resource_param = max_iter or n_estimators) will be detected.

The value of resource_param will be treated as a

“max resource value”, and all classifiers will be

initialized with max resource value // max_iters, where

max_iters is this defined parameter. On each epoch,

resource_param (max_iter or n_estimators) is

incremented by max resource value // max_iters.

("random"or"bayesian"or"bohb"or"hyperopt" (search_optimization) –

or “optuna” or ray.tune.suggest.Searcher instance):

Randomized search is invoked with search_optimization set to

"random" and behaves like scikit-learn’s

RandomizedSearchCV.

Bayesian search can be invoked with several values of

search_optimization.

Tree-Parzen Estimators search is invoked with

search_optimization set to "hyperopt" via HyperOpt:

http://hyperopt.github.io/hyperopt

All types of search aside from Randomized search require parent

libraries to be installed.

Alternatively, instead of a string, a Ray Tune Searcher instance

can be used, which will be passed to tune.run().

use_gpu (bool) – Indicates whether to use gpu for fitting.

Defaults to False. If True, training will start processes

with the proper CUDA VISIBLE DEVICE settings set. If a Ray

cluster has been initialized, all available GPUs will

be used.

loggers (list) – A list of the names of the Tune loggers as strings

to be used to log results. Possible values are “tensorboard”,

“csv”, “mlflow”, and “json”

pipeline_auto_early_stop (bool) – Only relevant if estimator is Pipeline

object and early_stopping is enabled/True. If True, early stopping

will be performed on the last stage of the pipeline (which must

support early stopping). If False, early stopping will be

determined by ‘Pipeline.warm_start’ or ‘Pipeline.partial_fit’

capabilities, which are by default not supported by standard

SKlearn. Defaults to True.

stopper (ray.tune.stopper.Stopper) – Stopper objects passed to

tune.run().

time_budget_s (int|float|datetime.timedelta) – Global time budget in

seconds after which all trials are stopped. Can also be a

datetime.timedelta object. The stopping condition is checked

after receiving a result, i.e. after each training iteration.

mode (str) – One of {min, max}. Determines whether objective is

minimizing or maximizing the metric attribute. Defaults to “max”.

**search_kwargs (Any) – Additional arguments to pass to the SearchAlgorithms (tune.suggest)

objects.

propertybest_estimator_¶

Estimator that was chosen by the search,

i.e. estimator which gave highest score (or smallest loss if

specified) on the left out data. Not available if refit=False.

See refit parameter for more information on allowed values.

Type

estimator

propertybest_index_¶

The index (of the cv_results_ arrays)

which corresponds to the best candidate parameter setting.

The dict at search.cv_results_['params'][search.best_index_] gives

the parameter setting for the best model, that gives the highest

mean score (search.best_score_).

For multi-metric evaluation, this is present only if refit is

specified.

Type

int

propertybest_params_¶

Parameter setting that gave the best results on the hold

out data.

For multi-metric evaluation, this is present only if refit is

specified.

Type

dict

propertybest_score_¶

Mean cross-validated score of the best_estimator

For multi-metric evaluation, this is present only if refit

is specified.

Type

float

propertyclasses_¶

Get the list of unique classes found in the target y.

Type

list

propertydecision_function¶

Get decision_function on the estimator with the best

found parameters.

Only available if refit=True and the underlying estimator supports

decision_function.

Type

function

fit(X, y=None, groups=None, **fit_params)¶

Run fit with all sets of parameters.

tune.run is used to perform the fit procedure.

Parameters

X (array-like (shape = [n_samples, n_features])) – Training vector, where n_samples is the number of samples and

n_features is the number of features.

y (array-like) – Shape of array expected to be [n_samples]

or [n_samples, n_output]). Target relative to X for

classification or regression; None for unsupervised learning.

groups (array-like (shape (n_samples,)), optional) – Group labels for the samples used while splitting the dataset

into train/test set. Only used in conjunction with a “Group”

cv instance (e.g., GroupKFold).

**fit_params (dict of str) – Parameters passed to

the fit method of the estimator.

Returns

TuneBaseSearchCV child instance, after fitting.

get_params(deep=True)¶

Get parameters for this estimator.

Parameters

deep (bool,default=True) – If True, will return the parameters for this estimator and

contained subobjects that are estimators.

Returns

params – Parameter names mapped to their values.

Return type

dict

propertyinverse_transform¶

Get inverse_transform on the estimator with the best found

parameters.

Only available if the underlying estimator implements

inverse_transform and refit=True.

Type

function

propertymultimetric_¶

Whether evaluation performed was multi-metric.

Type

bool

propertyn_splits_¶

The number of cross-validation splits (folds/iterations).

Type

int

propertypredict¶

Get predict on the estimator with the best found

parameters.

Only available if refit=True and the underlying estimator supports

predict.

Type

function

propertypredict_log_proba¶

Get predict_log_proba on the estimator with the best found

parameters.

Only available if refit=True and the underlying estimator supports

predict_log_proba.

Type

function

propertypredict_proba¶

Get predict_proba on the estimator with the best found

parameters.

Only available if refit=True and the underlying estimator supports

predict_proba.

Type

function

propertyrefit_time_¶

Seconds used for refitting the best model on the

whole dataset.

This is present only if refit is not False.

Type

float

score(X, y=None)¶

Compute the score(s) of an estimator on a given test set.

Parameters

X (array-like (shape = [n_samples, n_features])) – Input

data, where n_samples is the number of samples and

n_features is the number of features.

y (array-like) – Shape of array is expected to be

[n_samples] or [n_samples, n_output]). Target relative to X

for classification or regression. You can also pass in

None for unsupervised learning.

Returns

computed score

Return type

float

score_samples(X)¶

Call score_samples on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports

score_samples.

New in version 0.24.

Parameters

X (iterable) – Data to predict on. Must fulfill input requirements

of the underlying estimator.

Returns

y_score

Return type

ndarray of shape (n_samples,)

propertyscorer_¶

Scorer function used on the held out

data to choose the best parameters for the model.

For multi-metric evaluation, this attribute holds the validated

scoring dict which maps the scorer key to the scorer callable.

Type

function or a dict

set_params(**params)¶

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects

(such as Pipeline). The latter have

parameters of the form __ so that it’s

possible to update each component of a nested object.

Parameters

**params (dict) – Estimator parameters.

Returns

self – Estimator instance.

Return type

estimator instance

propertytransform¶

Get transform on the estimator with the best found

parameters.

Only available if the underlying estimator supports transform and

refit=True.

Type

function

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值