计算机英语大学英语语法问题,大学英语语法完整版.pdf

学英语语法

学英语语法

学习提纲

一、词类、句子成分和构词法:

1、词类:英语词类分十种:

名词、形容词、代词、数词、冠词、动词、副词、介词、连词、感叹词。

1、名词(n.): 表示人、事物、地点或抽象概念的名称。如:boy, morning, bag, ball, class,

orange.

2 、代词(p ron.) : 主要用来代替名词。如 who, she, you, it .

3、形容词(adj. .) :表示人或事物的性质或特征。如:good, right, white, orange .

4 、数词(num.) : 表示数目或事物的顺序。如:one, two, three,first , second, third,f ourth.

5、动词(v.) : 表示动作或状态。如:am, is,are,have,see .

6、副词(adv.) : 修饰动词、形容词或其他副词,说明时间、地点、程度等。如:now, very,

here, of ten, quietly, slowly.

7、冠词(art..) :用在名词前,帮助说明名词。如:a, an, the.

8、介词(p rep.) :表示它后面的名词或代词与其他句子成分的关系。如in, on,f rom, above,

behind.

9、连词(conj. ) : 用来连接词、短语或句子。如and, but, bef ore .

10、感叹词(interj. .)表示喜、怒、哀、乐等感情。如:oh, well, hi, hello.

2、句子成分:英语句子成分分为七种:主语、谓语、宾语、定语、状语、表语、宾语补足

语。

1、主语是句子所要说的人或事物,回答是“谁”或者 “什么”。通常用名词或代词担任。

如:I m Miss Green.(我是格林小姐)

2 、谓语动词说明主语的动作或状态,回答“做(什么) ”。主要由动词担任。如:Jack cleans

the room every day. (杰克每天打扫房间)

3、表语在系动词之后,说明主语的身份或特征,回答是“什么”或者 “怎么样”。通常由名

词、代词或形容词担任。如:My name is Ping ping .(我的名字叫萍萍)

4 、宾语表示及物动词的对象或结果,回答做的是“什么”。通常由名词或代词担任。如:

He can spe ll the word.(他能拼这个词)

有些及物动词带有两个宾语,一个指物,一个指人。指物的叫直接宾语,指人的叫间接

Page 1 of 91

宾语。间接宾语一般放在直接宾语的前面。如:He wrote me a letter . (他给我写了

一封信)

有时可把介词to 或for 加在间接宾语前构成短语,放在直接宾语后面,来强调间接宾

语。如:He wrote a letter to me . (他给我写了一封信)

5、定语修饰名词或代词,通常由形容词、代词、数词等担任。如:

Shanghai is a big city . (上海是个 城市)

6、状语用来修饰动词、形容词、副词,通常由副词担任。如:He works hard .(他工作努力)

7、宾语补足语用来说明宾语怎么样或干什么,通常由形容词或动词充当。如:They usually

keep their classroom clean.(他们通常让教室保持清洁) / He of ten help s me do my

lessons.( 他常常帮我做功课) / The teacher wanted me to learn French all by

my self.(老师要我自学法语)

☆同位语通常紧跟在名词、代词后面,进一步说明它的情况。如:Where is yo ur classmate

Tom ?(你的同学汤姆在哪里?)

3、构词法:英语构词法主要有:合成法、派生法和转换法。

1、

内容概要:本文详细介绍了一个基于MATLAB实现的线性回归(LR)电力负荷预测项目实例,涵盖了从项目背景、模型架构、算法流程、代码实现到GUI界面设计的完整开发过程。项目通过整合历史负荷、气象数据、节假日信息等多源变量,构建多元线性回归模型,并结合特征工程、数据预处理、正则化方法(如岭回归、LASSO)和模型评估指标(RMSE、MAPE、R²等),提升预测精度与泛化能力。文中还展示了系统化的项目目录结构、自动化部署脚本、可视化分析及工程集成方案,支持批量预测与实时滚动更新,具备高度模块化、可解释性强、部署友好的特点。; 适合人群:具备一定MATLAB编程基础,从事电力系统分析、能源管理、智能电网或数据建模相关工作的工程师、研究人员及高校师生。; 使用场景及目标:①应用于城市电力调度、新能源消纳、智能楼宇用能管理等场景下的短期负荷预测;②帮助理解线性回归在实际工程项目中的建模流程、特征处理与模型优化方法;③通过GUI界面实现交互式预测与结果可视化,支持工程落地与决策辅助; 阅读建议:建议结合提供的完整代码与GUI示例进行实践操作,重点关注数据预处理、特征构造、正则化调优与模型评估部分,深入理解各模块的设计逻辑与工程封装思路,以便迁移到类似的时间序列预测任务中。
【轴承故障诊断】基于SE-TCN和SE-TCN-SVM西储大学轴承故障诊断研究(Matlab代码实现)内容概要:本文介绍了基于SE-TCN(Squeeze-and-Excitation Temporal Convolutional Network)和SE-TCN-SVM的轴承故障诊断方法研究,重点针对西储大学(Case Western Reserve University, CWRU)的轴承数据集进行实验验证。研究通过构建SE-TCN模型提取振动信号中的深层时序特征,并利用SE模块增强关键特征通道的权重,从而提升故障识别精度。为进一步提高分类性能,还将SE-TCN提取的特征输入支持向量机(SVM)进行分类,形成SE-TCN-SVM混合模型。文中提供了完整的Matlab代码实现,便于复现实验结果。该方法在多工况、多故障类型下表现出良好的诊断准确率和鲁棒性,适用于工业设备的智能运维与早期故障预警。; 适合人群:具备一定信号处理和机器学习基础的研究生、科研人员及工程技术人员,尤其适合从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究人员;熟悉Matlab编程者更易上手。; 使用场景及目标:①应用于旋转机械设备(如电机、风机、齿轮箱等)的轴承故障诊断;②作为深度学习与传统分类器结合的典型案例,用于教学与科研参考;③目标是提升故障诊断的自动化水平与准确性,推动智能制造与预测性维护的发展。; 阅读建议:建议读者结合提供的Matlab代码,逐步运行并理解模型构建、特征提取与分类流程,同时尝试在其他公开数据集上迁移应用,以加深对SE-TCN架构与故障诊断流程的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值