协方差矩阵的几何解释和多重高斯分布

协方差矩阵的几何解释和多重高斯分布


这篇文章,总结之前阅读的这篇文章学到的知识点,即协方差矩阵的几何意义,同时利用几何解释,介绍多重高斯分布如何从标准单变量的高斯分布推导出来。主要涉及如下内容:

协方差矩阵的定义
协方差矩阵所体现的数据分布的几何意义
多重高斯分布的推导

协方差矩阵的定义

协方差矩阵一般出现在多重高斯分布的表达式中:
(1) p ( x ; μ , Σ ) = 1 ( 2 π ) n 2 ∣ Σ ∣ 1 2 e x p ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) p(x;\mu,\Sigma)=\frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}}exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)) \tag{1} p(x;μ,Σ)=(2π)2nΣ211exp(21(xμ)TΣ1(xμ))(1)
其中 μ \mu μ是列向量 x x x的平均值构成的向量,而 Σ \Sigma Σ即协方差矩阵。对于任意列向量来 Z Z Z来说,其协方差矩阵的定义为:
(2) C o v ( Z ) = E [ ( Z − E ( Z ) ) ( Z − E ( Z ) T ] = E [ Z Z T ] − ( E [ Z ] ) ( E [ Z ] ) T Cov(Z)=E[(Z-E(Z))(Z-E(Z)^T] \\ =E[ZZ^T]-(E[Z])(E[Z])^T \tag{2} Cov(Z)=E[(ZE(Z))(ZE(Z)T]=E[ZZT](E[Z])(E[Z])T(2)
列向量减去自身的均值向量,而后和自己的转置相乘,将会得到一个矩阵,参考两个变量之间的协方差的定义:
(3) C o v ( x , y ) = E [ ( x − E ( x ) ) ( y − E ( y ) ) ] Cov(x,y)=E[(x-E(x))(y-E(y))] \tag{3} Cov(x,y)=E[(xE(x))(yE(y))](3)
可以知道,得到的矩阵的第 c i j c_{ij} cij个变量就是第 i i i维的变量和第 j j j维的变量的协方差,而且 c i j = c j i c_{ij}=c_{ji} cij=cji,所以这个矩阵是对称的,而且由这个矩阵的变换功能本身来看,也必定至少是半正定的(positive semi-definite)。
对等式2来说,之所以等于 E ( Z Z T ) − ( E [ Z ] ) ( E [ Z ) ] ) T E(ZZ^T)-(E[Z])(E[Z)])^T E(ZZT)(E[Z])(E[Z)])T是基于矩阵的第 i j ij ij个元素有:
(4) σ ( z i , z j ) = E [ ( z i − E ( z i ) ) ( z j − E ( z j ) ) ] = E [ z i z j − E ( z i ) z j − E ( z j ) z i + E ( z i ) E ( z j ) ] = E [ z i z j ] − μ i E ( z j ) − μ j E ( z i ) + μ i μ j = E [ z i z j ] − μ i μ j \sigma(z_i,z_j)=E[(z_i-E(z_i))(z_j-E(z_j))]\\ =E[z_iz_j-E(z_i)z_j-E(z_j)z_i+E(z_i)E(z_j)] \\ =E[z_iz_j]-\mu_iE(z_j)-\mu_jE(z_i)+\mu_i\mu_j\\ =E[z_iz_j]-\mu_i\mu_j \tag{4} σ(zi,zj)=E[(ziE(zi))(zjE(zj))]=E[zizjE(zi)zjE(zj)zi+E(zi)E(zj)]=E[zizj]μi<

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值