- 博客(62)
- 收藏
- 关注
翻译 《《《翻译》》》SUN RGB-D数据集
参考网址:http://rgbd.cs.princeton.edu http://www0.cs.ucl.ac.uk/staff/M.Firman/RGBDdatasets/原文名称:SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite摘要虽然rgb-d传感器已经为一些视觉任务(如3D重建)带来了重大突...
2019-01-02 11:27:43
12394
3
翻译 《《《翻译》》》三维目标检测
原文名称:Three-Dimensional Object Detection and Layout Predictionusing Clouds of Oriented Gradients原文链接:https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Ren_Three-Dimensional_Object_De...
2018-12-26 12:22:11
1427
翻译 《《《翻译》》》Escape from Cells: 3D Point Cloud Models
文章原名:Escape from Cells: Deep Kd-Networks for the Recognition of3D Point Cloud Models文章地址:https://www.researchgate.net/publication/315797207_Escape_from_Cells_Deep_Kd-Networks_for_The_Recognition_of_...
2018-12-19 15:45:32
2622
2
翻译 《《《翻译》》》YOLO
原文名称:You Only Look Once:Unified, Real-Time Object Detection原文位置:http://pjreddie.com/darknet/yolo/http://pjreddie.com/yolo/摘要本文提出了一种新的目标检测方法——YOLO。在对象检测之前的工作重新使用分类器来执行检测。相反,我们将对象检测作为空间上分离的边界框和相关类概...
2018-12-13 12:30:35
3415
2
翻译 《《《翻译》》》StructSLAM
原文名称:StructSLAM: Visual SLAM WithBuilding Structure Lines原文链接:https://www.researchgate.net/publication/271134047_StructSLAM_Visual_SLAM_with_building_structure_lines摘要-根据人工建筑环境的结构规律,提出了一种新的6自由度视觉同步...
2018-12-07 17:15:35
2642
翻译 《《《翻译》》》avod 三维生成与目标检测
摘要我们提出AVOD,一个用于自主驾驶场景的聚合视图对象检测网络。提出的神经网络结构使用LIDAR点云和RGB图像生成由两个子网络共享的特征:区域建议网络(RPN)和第二级检测器网络。提出的RPN使用能够在高分辨率特征地图上执行多模态特征融合的新体系结构来为道路场景中的多个对象类生成可靠的3D对象建议。利用这些建议,第二阶段检测网络执行精确的面向3D边界盒回归和类别分类,以预测三维空间中物体的...
2018-12-02 20:38:15
2268
翻译 《《《翻译》》》OCTOMAP
摘要三维模型提供了空间的体积表示,这对于包括飞行机器人和装有机械手的机器人在内的各种机器人应用非常重要。在本文中,我们提出了一个开源框架来生成体积3D环境模型。我们的映射方法基于八叉树,使用概率占用估计。它明确地表示不仅占用的空间,而且自由和未知的区域。此外,我们提出一种八叉树地图压缩方法,以保持三维模型紧凑。我们的框架可以作为一个开源的C++库,并且已经成功地应用在多个机器人项目中。我们提出了...
2018-12-02 18:42:32
3735
翻译 《《《翻译》》》RGB-D Object Dataset
原文名称:A Large-Scale Hierarchical Multi-View RGB-D Object Dataset原文地址:https://www.researchgate.net/profile/Dieter_Fox/publication/221069308_A_Large-Scale_Hierarchical_Multi-View_RGB-D_Object_Dataset/l...
2018-11-14 19:07:48
2719
翻译 《《《翻译》》》pointnet++
原文名称:PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space原文地址:http://cn.arxiv.org/abs/1706.02413摘要很少有以前的作品研究深入学习点集。pointnet[ 20 ]是这个方向的先驱。然而,通过设计,PointNet没有捕获度量空间点所处的局部...
2018-10-31 17:13:39
7536
翻译 《《《翻译》》》pointNet
原文:PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation原文连接:https://arxiv.org/abs/1612.00593摘要点云是一种重要的几何数据结构。由于其格式不规则,大多数研究人员将这些数据转换成规则的三维体素网格或图像集合。然而,这使得数据不必要的庞大,并导致问题。本文...
2018-10-24 16:53:22
8451
2
翻译 《《《翻译》》》TUM:RGB-D SLAM系统评估的基准
翻译:A Benchmark for the Evaluation of RGB-D SLAM Systems原文链接:https://www.researchgate.net/publication/261353760_A_benchmark_for_the_evaluation_of_RGB-D_SLAM_systems摘要:本文提出了一种用于RGB-D SLAM系统评估的新的基准...
2018-10-16 17:20:29
10687
2
翻译 《《《翻译》》》轮式机器人导航行程时间预测
原文名称:Predicting Travel Time from Path Characteristics for Wheeled Robot Navigation原文下载:https://www.hrl.uni-bonn.de/papers/regier17ecmr.pdf https://www.hrl.uni-bonn.de/HRL/publicatio...
2018-09-27 14:19:49
983
翻译 《《《翻译》》》Navigation Through Cluttered Environments
原文地址:https://www.hrl.uni-bonn.de/papers/regier16iros.pdf https://www.hrl.uni-bonn.de/HRL/publications原文名称:Foresighted Navigation Through Cluttered Environments摘要 在本文中,我...
2018-09-21 15:07:47
1278
1
翻译 《《《翻译》》》3d_navigation
https://github.com/ros-planning/3d_navigation论文题目:Navigation in Three-Dimensional Cluttered Environments for Mobile Manipulation摘要:杂乱环境中的无碰撞导航对于任何移动操作系统都是必不可少的。传统的导航系统依赖于从3D表示投影的2D栅格地图以获得效率。然而,这种方...
2018-09-16 08:35:56
2230
3
转载 ***无人驾驶***整理的apollo 入门课程
转载自:https://mp.csdn.net/postedit/81081744自动驾驶系统主要包含三个部分:感知、决策、控制。从整个硬件的架构上也要充分考虑系统感知、决策、控制的功能要求。自动驾驶硬件包括:1.自动驾驶系统的硬件架构2.自动驾驶的传感器3.自动驾驶传感器的产品定义4.自动驾驶的大脑5.自动驾驶汽车的线控系统无人驾驶主要包括5部分:计算机视觉、传感器融合、定位、路径规划、...
2018-07-18 00:07:38
14699
5
转载 ***无人驾驶***apollo 3.0 硬件系统
Apollo 3.0来了!百度自动驾驶硬件系统全解读转载自:https://juejin.im/post/5b3b3e93e51d4519475ee653作者 | 王石峰编辑 | NatalieAI 前线导读:百度 Apollo 3.0 发布在即,本期 AI 前线社群分享我们很高兴邀请到了百度自动驾驶技术部高级产品经理王石峰,为我们带来《自动驾驶汽车硬件系统概述》的干货分享。...
2018-07-17 15:14:41
3987
翻译 《《《翻译》》》VoxelNet:基于点云的三维物体检测的端到端学习
https://arxiv.org/pdf/1711.06396.pdf https://github.com/jeasinema/VoxelNet-tensorflow摘要3D点云中物体的精确检测是许多应用中的一个核心问题,如自主导航、室内机器人和增强/虚拟现实。为了将高度稀疏的激光雷达点云与区域建议网络(RPN)进行接口,大多数现有的...
2018-05-17 12:54:47
12376
翻译 《《《翻译》》》pointfusion三维包围盒
摘要我们提出点融合pointfusion,一个通用的3D对象检测方法,利用图像和3D点云信息。与现有的方法,无论是使用多级管道或保持传感器和数据集特定的假设,点融合pointfusion概念上简单,应用不可知。图像数据和原始点云数据分别由CNN和PooNETB架构独立处理。然后通过一个新的融合网络来组合所得到的输出,该网络利用输入的3D点作为空间锚来预测多个3D盒子假设和它们的置信度。我们评估点...
2018-05-09 00:01:43
2991
1
翻译 《《《翻译》》》Microsoft COCO
摘要:我们提出了一个新的数据集,目的是将物体识别问题纳入更广泛的场景理解问题中,以推进最先进的物体识别技术。这是通过在自然环境中收集包含普通对象的复杂的日常场景的图像来实现的。对象使用每个实例分割标记,以帮助精确的对象定位。我们的数据集包含了91个对象类型的照片,它们很容易被4岁的人识别。共有250万个标记的情况下在328K图像数据集的创作汲取了广泛的群众参与类工作者通过检测新的用户界面,例如发现...
2018-03-14 20:27:28
2554
翻译 《《《翻译》》》显著性检测
摘要:研究了一种主动、自然的室内环境中未知物体的检测问题。提出了一种同时利用颜色和深度信息的视觉显著性方案,以唤起机器系统在三维场景中显著位置检测未知物体的兴趣。在突出位置的三维点被选择为种子点,用三维形状生成对象假设。我们在马尔可夫随机场(MRF)上对三维场景的体素进行多类标记,结合对象假设和三维形状的线索。MRF的结果进一步细化合并标记的对象,它们之间的空间连接和颜色直方图之间有很高的相关性。...
2018-02-26 21:12:59
2130
翻译 《《《翻译》》》选择稀疏控制点的多标记点云标注
选择稀疏控制点的多标记点云标注摘要本文提出了细粒度的点云标注一个用户友好的方式。该方法要求用户通过鼠标接口选择属于对象的稀疏控制点。可以将多个控制点分配给相同的标签。该软件利用所选的控制点,在最短路径树上进行邻域图的分割算法。用户提供了对结果的实时反馈,并且可以纠正切分错误。与以前的工作相比,该方法支持散乱点云的多标签标注。该方法已被多个用户评估,并...
2018-02-11 18:19:54
1264
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅