从 relu 的多种实现来看 torch.nn 与 torch.nn.functional 的区别与联系

本文探讨了PyTorch中ReLU函数的三种实现方式,分别是torch.nn.ReLU()、torch.nn.functional.relu(),以及隐藏在C++库THNN中的实现。通过源码分析,揭示了torch.nn与torch.nn.functional之间的包装与引用关系,它们在灵活性和易用性之间取得平衡。torch.nn提供模型层的管理,而torch.nn.functional则包含更多基础函数,允许用户自定义模型组件。
摘要由CSDN通过智能技术生成

参考  从 relu 的多种实现来看 torch.nn 与 torch.nn.functional 的区别与联系 - 云+社区 - 腾讯云

relu多种实现之间的关系:

relu 函数在 pytorch 中总共有 3 次出现:

  1. torch.nn.ReLU()
  2. torch.nn.functional.relu_() torch.nn.functional.relu_()
  3. torch.relu() torch.relu_()

而这3种不同的实现其实是有固定的包装关系,由上至下是由表及里的过程。其中最后一个实际上并不被 pytorch 的官方文档包含,同时也找不到对应的 python 代码,只是在 __init__.pyi 中存在,因为他们来自于通过C++编写的THNN库。

下面通过分析源码来进行具体分析:

1、torch.nn.ReLU()


torch.nn 中的类代表的是神经网络层,这里我们看到作为类出现的 ReLU() 实际上只是调用了 torch.nn.functional 中的 relu relu_ 实现。

class ReLU(Module):
    r"""Applies the rectified linear unit function element-wise:

    :math:`\text{ReLU}(x)= \max(0, x)`

    Args:
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(N, *)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(N, *)`, same shape as the input

    .. image:: scripts/activation_images/ReLU.png

    Examples::

        >>> m = nn.ReLU()
        >>> input 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值