根据定义,声音去噪是从音频信号中去除不需要的噪音或干扰,以提高其质量和清晰度的过程。这涉及识别和隔离噪音成分(通常以不规则或高频元素为特征),并将其过滤掉,同时保持原始声音的完整性。

声音去噪目标是改善聆听体验以及音频分析和处理的准确性。过滤掉噪音对于高保真音频来说非常重要,不仅是为了聆听,也是为了创建某些机器学习任务的数据集。

理想情况下,去噪应该是数据清理步骤中的一部分。

理解FFT

我们从实际的例子开始,在派对上房间里充满了各种声音:人们在说话,音乐在播放,玻璃杯在碰撞。在所有的噪音中,很难专注于我们对话说的声音。

音频去噪:使用Python和FFT增强音质_python

我们可以把FFT(快速傅里叶变换)想想成一个一副神奇的眼镜,它可以让你能够看到房间里的每种声音都有不同的颜色。戴上这副眼镜,你就可以在所有其他声音中轻松识别出你朋友的声音(一种特定的颜色)。这样就可以过滤掉其他分散注意力的声音(颜色),只专注于你朋友的声音。

**FFT(快速傅里叶变换)**是一种强大的工具,它将信号从原始的时域转换到频域。通过分析信号的频率成分,我们可以识别并去除不需要的噪音,从而提高原始声音的质量。

加载声音信号

在这个例子中,我们不会从本地或在线加载音频信号,而是使用NumPy创建我们自己的简单正弦信号

importnumpyasnp  
 importmatplotlib.pyplotasplt
 
 defgenerate_signal(length, freq):  
   """生成一个正弦信号。
   
   参数:  
     length: 信号的长度。 
     freq: 信号的频率。
   
   返回:  
     表示信号的numpy数组。 
   """  
   t=np.linspace(0, 1, length)  
   signal=np.sin(2*np.pi*freq*t)  
   returnsignal
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.

在创建声音信号后,让我们使用NumPy中的随机函数向信号添加噪音。

defadd_noise(signal, noise_level):  
   """向信号添加噪音。
   
   参数:  
     signal: 原始信号。 
     noise_level: 要添加的噪音水平。
   
   返回:  
     表示带噪信号的numpy数组。 
   """  
   noise=np.random.normal(0, noise_level, len(signal))  
   noisy_signal=signal+noise  
   returnnoisy_signal
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.

对信号应用FFT

defdenoise_fft(noisy_signal, threshold):  
   """使用FFT对信号进行去噪。
   
   参数:  
     noisy_signal: 带噪信号。 
     threshold: 用于过滤频率成分的阈值。
   
   返回:  
     表示去噪后信号的numpy数组。 
   """  
   fft_signal=np.fft.fft(noisy_signal)  
   fft_signal[np.abs(fft_signal) <threshold] =0  
   denoised_signal=np.real(np.fft.ifft(fft_signal))  
   returndenoised_signal
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.

在频域中识别噪音

fft_signal[np.abs(fft_signal) <threshold] =0  
 denoised_signal=np.real(np.fft.ifft(fft_signal))
  • 1.
  • 2.

在上面的代码中,这一步帮助我们在频域中识别噪音

过滤噪音并转换回时域

通过设置阈值,我们过滤掉噪音。将幅度低于某个阈值的频率成分设置为零。这从信号中去除了低幅度(噪音)频率。

比较原始信号和去噪后的信号

if__name__=="__main__":  
   # 生成信号  
   signal_length=1024  
   signal_freq=50  
   signal=generate_signal(signal_length, signal_freq)
 
   # 添加噪音  
   noise_level=0.5  
   noisy_signal=add_noise(signal, noise_level)
   
   # 使用FFT去噪  
   threshold=100  
   denoised_signal=denoise_fft(noisy_signal, threshold)
   
   # 绘制结果  
   plt.figure(figsize=(12, 6))  
   plt.subplot(311)  
   plt.plot(signal, label='Original Signal')  
   plt.legend()  
   plt.subplot(312)  
   plt.plot(noisy_signal, label='Noisy Signal')  
   plt.legend()  
   plt.subplot(313)  
   plt.plot(denoised_signal, label='Denoised Signal')  
   plt.legend()  
   plt.tight_layout()  
   plt.show()
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.

使用Matplotlib绘制一些带噪信号和去噪信号之间的比较图。

音频去噪:使用Python和FFT增强音质_python_02

A)原始信号 B)带噪信号 C)去噪后的信号

总结

本文我们探讨了如何使用快速傅里叶变换(FFT)对声音信号进行去噪。FFT是一种强大的工具,它将信号从原始的时域转换到频域。通过分析信号的频率成分,我们可以识别并去除不需要的噪音,从而提高原始声音的质量。

主要的步骤如下:

加载声音信号: 我们将从使用NumPy加载一个带噪的声音信号开始。

应用FFT: 使用FFT,我们将时域信号转换为频域。这让我们能够看到构成信号的不同频率成分。

识别和过滤噪音: 在频域中,噪音通常表现为高频成分或不属于原始信号的尖峰。通过识别和过滤掉这些不需要的频率,我们可以减少噪音。

作者:Prerak Joshi