深度学习
文章平均质量分 73
渔老师
专注企业电商采购领域解决方案
展开
-
Python-简单的正则使用
从例子中我们可以看出,re.match()方法返回一个匹配的对象,而不是匹配的内容。而如果从起始位置开始没有匹配成功,即便其他部分包含需要匹配的内容,re.match()也会返回None。match方法尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none。表达式:[a-zA-Z0-9_-]+@[a-zA-Z0-9_-]+(?:.[a-zA-Z0-9_-]+)天数:(([0-2][1-9])|10|20|30|31)月份:((0[1-9])|(10|11|12))原创 2022-12-01 15:41:10 · 263 阅读 · 0 评论 -
FASTAPI的简单理解
上面的示例中,路径中的{language_id}声明了一个路径参数language_id,对应的函数find_language(language_id)中通过定义同名的函数参数来接受数据值,但此处未对参数类型进行定义,所以在返回数据时采用int(language_id)对数据值进行了类型转换。查询参数 q 的类型是 Optional[str],即它的类型是 str,但也可以是 None(其实,是它的默认值为 None), q 是可选参数。如果把有默认值的参数置于无默认值的参数前,Python 会报错。原创 2022-10-28 17:31:24 · 1316 阅读 · 0 评论 -
yolo-目标检测算法简介
yolo是一种卷积神经网络结构,yolo(意思是神经网络只需要看一次图片,就能输出结果),通过给出的物体坐标获取目标的特征信息,然后将信息存储、学习,在目标图像上找到符合的特征信息,确定目标位置。yolo的预测是基于整个图片的,并且它会一次性输出所有检测到的目标信息,包括类别和位置。目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。:每一次训练神经网络送入模型的样本数,在卷积神经网络中,大批次通常可使网络更快收敛,原创 2022-09-29 18:38:36 · 5843 阅读 · 1 评论 -
ocr的场景应用--发票识别
ocr识别的简单应用原创 2022-09-02 08:59:09 · 2234 阅读 · 0 评论 -
百度paddleocr检测训练
1.准备一个新的虚拟环境,安装下载的源码当中对应的requirements.txt文件,记住paddle的版本尽量和下载的代码版本一致,使用tensorrt需要的paddlepaddle版本也不一样,需要去官网查找。program.py调整ArgsParser下面的-c-config指定为.yml的配置文件路径(也就是你修改的配置文件路径)最后训练好可以在./output/db_mv3下面的yml中查看训练的配置文件。Label.txt保存的gt框的坐标(一般用的都是这个)2.准备自己的数据集。...原创 2022-07-26 16:15:50 · 1548 阅读 · 3 评论 -
RTX3090+ubuntu18.04安装驱动455.23.05配置cuda11.1+cudnn8.04运行pytorch1.8.1
一、关键字Ubuntu18.04 RTX3090 Driver455.23.05 Cuda11.1+cudnn 8.04二、下载地址显卡驱动下载https://www.nvidia.cn/geforce/drivers/cuda-toolkit 11.1https://developer.nvidia.com/cuda-11.1.0-download-archiveCUDA 有两种API,分别是 运行时 API 和 驱动API,即所谓的 Runtime API 与 Drive原创 2022-02-07 14:00:57 · 1633 阅读 · 0 评论 -
word2vec详解
关键字语料 向量模型 文本 分词 词向量化 向量距离一、word2vec的概念解释word2vec是一种将单词转换为向量形式的工具。用于将文本的处理的问题简化为向量空间中的向量运算,通过计算向量空间上的距离来表示文本语义上的相似度。word2vec在2018年之前比较主流,但随着Bert、GPT2.0的出现,地位有所下降。二、word2vec的具体实现方法+、独热 One-hot简单来说就是借助词表,将词表中的所有词进行统一编码,每一个词在词空间中占据一个位置;形如: “话筒”表示原创 2021-10-31 21:13:37 · 3983 阅读 · 1 评论 -
使用TensorFlow Serving以服务方式部署模型
8501 — Rest Api 端口8500 — gRPC 端口CPUsudo docker run -p 8501:8501 -p 8500:8500–mount type=bind,source=/data/_models/n2n_xy,target=/models/n2n_xy-e MODEL_NAME=n2n_xy -t tensorflow/serving &GPUsudo docker run -p 8501:8501 -p 8500:8500 --mount type=b原创 2021-09-30 22:10:58 · 164 阅读 · 0 评论 -
如何理解神经网络
一、神经网络中的核心概念1、类型全连接网络、前馈神经网络(数据单一方向向前传播)卷积神经网络(逐层降低数据维度)循环神经网络2、激活函数二、神经网络的基本结构三、神经网络如何起作用每一个输入就是对猫(或狗)的一个描述,所有的激活函数的集合就是对描述的判断,判断到底有多逼近真相;神经网络就是用感知机去逼近任何一个统计模型(即用具象化的数据,推断出分类的范围,各范围区间允许有一定的误差);...原创 2021-07-31 22:31:11 · 890 阅读 · 0 评论
分享