【Unity】五子棋AI博弈算法实讲

大家好!五子棋是我们在学习生活中比较常见的棋类游戏之一。两人对弈,一黑一白,下在棋盘的交叉点上,横竖斜形成五子连珠即可获胜。也许有的同学编程的入门之作就是做一款五子棋,我刚好在项目开发过程中,有涉及到相关玩法的开发。今天我就来做一个系统的、分层次性的概述,跟大家探讨一下五子棋中AI博弈算法

一、五子棋玩法。

五子棋玩法的实现没什么难度,无非就是一个用一个状态机控制战斗逻辑,然后就是简单的交互和显示逻辑。值得探讨的部分,还是AI博弈的部分。想要实现一个(简单/一般/困难/地域)不同难度的AI,作为我们本篇主要讨论的重点。

二、AI博弈算法。

  1. 最简单的随机策略。即每次随机选择一个合法的位置进行下子。此算法更多是用在一方超时,触发的算法。这种算法不太聪明,下子毫无章法,玩家与之对弈,也毫无竞技性和体验性可言。
  2. 基础算法。积分算法比较简单,只考虑当前步的情况,只取当前步的最优位置
    这里给一下算法思路。下子时,不仅需要考虑连珠情况,也要考虑对手棋子的影响,我们分别称之为积极因素和消极因素。
  • 分别设定一个积极因素评估数组score1 = { 7, 35, 800, 15000, 800000 },一个消极因素评估数组score2 = { 7, 15, 400, 2500, 100000 }。(为啥是这些数值,我未做深入探究,有同学感兴趣可做进一步研究)
  • 定义一个方法count_point,用于计算棋盘中各个点的评估分数。从棋盘的初始点方向,依次计算每个点位的积极因素和消极因素。然后筛选出空白可下的点位,进行一个分数排序。然后在分数最高的队列里,随机一个点位,即为最佳位置。

如果想要调整不同水平的难度,可以考虑从前n个空白点位中随机一个。比如可以在分数排序之后,从前1/4个数中随机一个。这样AI的博弈水平就会降到一定程度。只是一个思路,大家也可以有不同的做法。

  1. 高阶算法。α-β剪枝算法是一种经典的博弈树搜索算法,它可以在搜索树中找到最优的下一步棋,并且具有很高的效率和搜索深度。它可以考虑接下来n步之后的棋面情形,来找出当下最优的下一步棋,比上面的积分算法更加的准确。)这里给出一个简单的α-β剪枝算法实例。
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System;

public class RandomAITest : MonoBehaviour
{
    private const int WINNING_SCORE = 1000000;
    private const int THREE_IN_A_ROW = 100;
    private const int TWO_IN_A_ROW = 10;
    private const int ONE_IN_A_ROW = 1;

    // 获取当前玩家的颜色
    int GetCurrentPlayerColor(int[,] board)
    {
        int count = 0;
        for (int i = 0; i < board.GetLength(0); i++)
        {
            for (int j = 0; j < board.GetLength(1); j++)
            {
                if (board[i, j] != 0)
                {
                    count++;
                }
            }
        }
        return count % 2 == 0 ? 1 : 2;
    }

    // 使用α-β剪枝算法进行决策
    Tuple<int, int> AlphaBetaSearch(int[,] board, int depth)
    {
        Tuple<int, int> bestMove = new Tuple<int, int>(-1, -1);
        int alpha = int.MinValue;
        int beta = int.MaxValue;
        int playerColor = GetCurrentPlayerColor(board);
        Tuple<int, int>[,] actions = GenerateActions(board);
        foreach (Tuple<int, int> action in Shuffle(actions))
        {
            int[,] newBoard = UpdateBoard(board, action.Item1, action.Item2, playerColor);
            int score = MinValue(newBoard, alpha, beta, depth - 1, playerColor);
            if (score > alpha)
            {
                alpha = score;
                bestMove = action;
            }
        }
        return bestMove;
    }

    bool IsGameOver(int[,] board)
    {
        //TODO:判断游戏是否结束
        return false;
    }

    // MaxValue函数
    int MaxValue(int[,] board, int alpha, int beta, int depth, int playerColor)
    {
        if (depth == 0 || IsGameOver(board))
        {
            return Evaluate(board, playerColor);
        }
        int v = int.MinValue;
        Tuple<int, int>[,] actions = GenerateActions(board);
        foreach (Tuple<int, int> action in Shuffle(actions))
        {
            int[,] newBoard = UpdateBoard(board, action.Item1, action.Item2, playerColor);
            int score = MinValue(newBoard, alpha, beta, depth - 1, playerColor);
            if (score > v)
            {
                v = score;
            }
            if (v >= beta)
            {
                return v;
            }
            alpha = Math.Max(alpha, v);
        }
        return v;
    }

    // MinValue函数
    int MinValue(int[,] board, int alpha, int beta, int depth, int playerColor)
    {
        if (depth == 0 || IsGameOver(board))
        {
            return Evaluate(board, playerColor);
        }
        int v = int.MaxValue;
        Tuple<int, int>[,] actions = GenerateActions(board);
        foreach (Tuple<int, int> action in Shuffle(actions))
        {
            int[,] newBoard = UpdateBoard(board, action.Item1, action.Item2, 3 - playerColor);
            int score = MaxValue(newBoard, alpha, beta, depth - 1, playerColor);
            if (score < v)
            {
                v = score;
            }
            if (v <= alpha)
            {
                return v;
            }
            beta = Math.Min(beta, v);
        }
        return v;
    }

    // 评估函数
    int Evaluate(int[,] board, int player)
    {
        int score = 0;

        // Check horizontal
        score += EvaluateDirection(board, player, 0, 1); // right
        score += EvaluateDirection(board, player, 0, -1); // left

        // Check vertical
        score += EvaluateDirection(board, player, 1, 0); // down

        // Check diagonal
        score += EvaluateDirection(board, player, 1, 1); // diagonal down-right
        score += EvaluateDirection(board, player, 1, -1); // diagonal down-left

        return score;
    }

    private int EvaluateDirection(int[,] board, int player, int deltaRow, int deltaCol)
    {
        int score = 0;

        for (int row = 0; row < board.Rows; row++)
        {
            for (int col = 0; col < board.Columns; col++)
            {
                int consecutiveCount = 0;
                int emptyCount = 0;
                bool blocked = false;

                for (int i = 0; i < 4; i++)
                {
                    int currentRow = row + i * deltaRow;
                    int currentCol = col + i * deltaCol;

                    if (!board.IsValidPosition(currentRow, currentCol))
                    {
                        blocked = true;
                        break;
                    }

                    if (board[currentRow, currentCol] == player)
                    {
                        consecutiveCount++;
                    }
                    else if (board[currentRow, currentCol] == Player.None)
                    {
                        emptyCount++;
                    }
                    else
                    {
                        blocked = true;
                        break;
                    }
                }

                if (!blocked)
                {
                    if (consecutiveCount == 4)
                    {
                        return WINNING_SCORE;
                    }
                    else if (consecutiveCount == 3 && emptyCount == 1)
                    {
                        score += THREE_IN_A_ROW;
                    }
                    else if (consecutiveCount == 2 && emptyCount == 2)
                    {
                        score += TWO_IN_A_ROW;
                    }
                    else if (consecutiveCount == 1 && emptyCount == 3)
                    {
                        score += ONE_IN_A_ROW;
                    }
                }
            }
        }

        return score;
    }

    // 生成所有可行的下子位置
    Tuple<int, int>[,] GenerateActions(int[,] board)
    {
        int size = board.GetLength(0);
        Tuple<int, int>[,] actions = new Tuple<int, int>[size, size];
        int count = 0;
        for (int i = 0; i < size; i++)
        {
            for (int j = 0; j < size; j++)
            {
                if (IsValidMove(board, i, j))
                {
                    actions[i, j] = new Tuple<int, int>(i, j);
                    count++;
                }
            }
        }
        Tuple<int, int>[,] result = new Tuple<int, int>[count, 1];
        int index = 0;
        for (int i = 0; i < size; i++)
        {
            for (int j = 0; j < size; j++)
            {
                if (actions[i, j] != null)
                {
                    result[index, 0] = actions[i, j];
                    index++;
                }
            }
        }
        return result;
    }

    // 更新棋盘
    int[,] UpdateBoard(int[,] board, int x, int y, int color)
    {
        int size = board.GetLength(0);
        int[,] newBoard = new int[size, size];
        for (int i = 0; i < size; i++)
        {
            for (int j = 0; j < size; j++)
            {
                newBoard[i, j] = board[i, j];
            }
        }
        newBoard[x, y] = color;
        return newBoard;
    }

    // 洗牌算法
    Tuple<int, int>[,] Shuffle(Tuple<int, int>[,] array)
    {
        System.Random rng = new System.Random();
        int n = array.GetLength(0);
        while (n > 1)
        {
            n--;
            int k = rng.Next(n + 1);
            Tuple<int, int>[,] value = array[k, 0];
             array[k, 0] = array[n, 0];
            array[n, 0] = value;
        }
        return array;
    }
}

它可以根据你调用AlphaBetaSearch方法时,传入depth深度的值,用于找出对于接下来depth步之内最有利的下一步位置。这种博弈算法在对AI水平要求比较高的情况下才使用,AI难度已经非常的高,且对性能要求也比较高。如果不是专门研究五子棋棋法的,不必使用这么高端的算法。用上面第二点的积分算法即可。

三、总结。
以上即时,从不同层次结构对五子棋AI算法的探讨和实现。希望给大家带来一定系统性的认识。

### 回答1: Unity五子棋的极大极小算法是一种搜索算法,用于在给定的游戏状态下找到最佳的下一步棋。它通过考虑当前玩家和对手的最佳决策,以获取最大化利益或最小化损失的结果。 在极大极小算法中,我们通过递归搜索游戏的各种可能状态来评估当前局面。首先,我们检查游戏是否达到了终止状态,比如有玩家赢得了比赛或者出现了平局。如果是这样,我们返回相应的分数作为评估值。 如果游戏没有结束,我们生成当前玩家的所有合法移动,然后逐个尝试这些移动,并递归调用极大极小算法来评估对手的最佳决策。在对手的回合中,我们选择能够最小化我们自己得分的决策。这个过程会一直进行下去,直到达到终止状态。 在递归回溯的时候,我们会根据当前玩家是极大还是极小来选择最优的决策。对于极大玩家,我们选择能够最大化得分的决策;对于极小玩家,我们选择能够最小化得分的决策。最后,我们将评估值返回给上一层,并根据返回值选择最佳决策。 通过使用极大极小算法,我们可以在Unity五子棋中找到最优的下一步棋。然而,由于搜索空间的大小,这种算法可能会导致较长的计算时间。因此,可以通过优化搜索策略、剪枝等技术来提高算法的效率。 ### 回答2: unity五子棋的极大极小算法是一种用于计算机下棋时选取最佳落子位置的算法。该算法通过枚举所有可能的下棋步骤,然后计算每个步骤的分数,最后选择分数最高(或最低)的步骤作为落子位置。 在五子棋游戏中,每个棋子的落子位置都会对游戏局势产生影响。极大极小算法通过递归地计算所有可能的下一步棋的情况,来判断当前局势对于两位玩家的优势情况。 算法的实现过程可以大致分为以下几个步骤: 1. 构建游戏树:从当前局面开始,递归地生成所有可能的下一步棋的情况,形成一棵游戏树。 2. 评估函数:为了计算每个节点的得分,需要设定一个评估函数。评估函数可以根据当前局势的优势程度来给节点打分,其中正数表示对Max玩家有利,负数表示对Min玩家有利。 3. 极大极小搜索:从根节点开始,以Max玩家和Min玩家的角色交替选择步骤,通过比较子节点的分数来选择最优的下一步棋。 4. Alpha-Beta剪枝:在搜索过程中,可以通过Alpha-Beta剪枝来优化算法,减少不必要的搜索。 通过以上步骤,可以在有限的时间内找到一个最佳的落子位置,并使计算机在五子棋游戏中具备一定的智能和策略。 ### 回答3: Unity 五子棋中的极大极小算法是一种用于确定最优棋局的算法。它通过遍历所有可能的下棋动作并评估每个动作的结果来找到最佳的下一步棋。 极大极小算法在下棋时考虑两个角色:极大方和极小方。极大方是当前的下棋方,而极小方是对手方。算法通过递归地模拟所有可能的下一步棋来获得最佳的下棋策略。 算法的核心思想是在每个决策节点上交替考虑最大化和最小化的结果。极大方追求最大利益,而极小方则追求最小损失。 算法的步骤如下: 1. 遍历棋盘上的每个空位置。 2. 对于每个空位置,极大方尝试在此处下一步棋。 3. 如果此步棋导致五子连珠,返回评估值(例如100),表示极大方的胜利。 4. 否则,轮到极小方考虑下一步棋。 5. 对于极小方,尝试在每个空位置下一步棋。 6. 如果此步棋导致五子连珠,返回评估值(例如-100),表示极小方的胜利。 7. 否则,轮到下一层的极大方继续考虑下一步棋。 8. 递归重复步骤2到7,直到达到指定的搜索深度或全局最优解。 9. 在达到搜索深度或全局最优解后,评估每个可能的下一步棋的得分。 10. 选择得分最高的那一步作为最佳下棋策略。 通过极大极小算法Unity 五子棋能够在有限的搜索深度内找到最佳的下棋策略。但是,由于五子棋的状态空间非常庞大,完全搜索所有可能的下棋序列是不可行的。因此,通常需要通过剪枝等优化方法来加速搜索过程,并提高算法的性能和效率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值