2015_Coordinated cruise control for high-speed train movements based on a multi-agent model
文章目录
1. Introduction
2. The dynamic model of high-speed trains and some preliminaries
{
x
˙
i
(
t
)
=
v
i
,
i
=
1
,
2
,
⋯
,
n
1
m
i
v
˙
i
(
t
)
=
u
i
−
m
i
(
c
i
0
+
c
i
1
v
i
(
t
)
+
c
i
2
v
i
2
(
t
)
)
,
i
=
1
,
2
,
3
,
⋯
,
n
(2)
\left\{\begin{aligned} \dot{x}_i(t) &= v_i, ~~~~ i = 1,2,\cdots, n_1 \\ m_i \dot{v}_i(t) &= u_i - m_i (c_{i0} + c_{i1} v_i(t) + c_{i2} v_i^2(t)), ~~~~ i=1,2,3,\cdots,n \\ \end{aligned}\right. \tag{2}
{x˙i(t)miv˙i(t)=vi, i=1,2,⋯,n1=ui−mi(ci0+ci1vi(t)+ci2vi2(t)), i=1,2,3,⋯,n(2)
符号表示为:
x
i
x_i
xi:表示位置,
v
i
v_i
vi:表示速度,
m
i
m_i
mi:表示质量,
u
i
u_i
ui:表示控制力。
Then the nominal control force in the equilibrium state is
u
ˉ
i
=
c
i
0
m
i
+
c
i
1
m
i
v
r
+
c
i
2
m
i
v
r
2
,
i
=
1
,
2
,
⋯
,
n
(3)
\bar{u}_i = c_{i0} m_i + c_{i1} m_i v_r + c_{i2} m_i v_r^2, ~~~~ i=1,2,\cdots, n \tag{3}
uˉi=ci0mi+ci1mivr+ci2mivr2, i=1,2,⋯,n(3)
3. Coordinated cruise control design
u i ( t ) = u ˉ i + u 1 i ( t ) + u 2 i ( t ) + u 3 i ( t ) (7) u_i(t) = \bar{u}_i + u_{1i}(t) + u_{2i}(t) + u_{3i}(t) \tag{7} ui(t)=uˉi+u1i(t)+u2i(t)+u3i(t)(7)
u 1 i ( t ) = m i α ∑ j = 1 n a i j ( v j ( t ) − v i ( t ) ) u 2 i ( t ) = − m i β ∑ j = 1 n a i j ∇ x i U i j u 3 i ( t ) = m i k ( v i ( t ) − v r ) \begin{aligned} u_{1i}(t) &= m_i \alpha \sum_{j=1}^n a_{ij} (v_j(t) - v_i(t)) \\ u_{2i}(t) &= -m_i \beta \sum_{j=1}^n a_{ij} \nabla_{x_i} U_{ij} \\ u_{3i}(t) &= m_i k (v_i(t) - v_r) \end{aligned} u1i(t)u2i(t)u3i(t)=miαj=1∑naij(vj(t)−vi(t))=−miβj=1∑naij∇xiUij=mik(vi(t)−vr)
4. Numerical simulations
Example 4.1.