有 n 个气球,编号为0 到 n - 1,每个气球上都标有一个数字,这些数字存在数组 nums 中。
现在要求你戳破所有的气球。戳破第 i 个气球,你可以获得 nums[i - 1] * nums[i] * nums[i + 1] 枚硬币。 这里的 i - 1 和 i + 1 代表和 i 相邻的两个气球的序号。如果 i - 1或 i + 1 超出了数组的边界,那么就当它是一个数字为 1 的气球。
求所能获得硬币的最大数量。
示例 1:
输入:nums = [3,1,5,8]
输出:167
解释:
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 315 + 358 + 138 + 181 = 167
示例 2:
输入:nums = [1,5]
输出:10
提示:
n == nums.length
1 <= n <= 300
0 <= nums[i] <= 100
思考 第1步 分析:
题目给出的信息是:n个气球,每个气球有数字,戳破气球获得硬币,硬币数为相邻三个数的乘积,边界视为1
思考 第2步 提取信息:
- 数组长度 1 <= n <= 300
- 数组元素范围 0 <= nums[i] <= 100
- 戳破气球时计算: nums[i-1] * nums[i] * nums[i+1]
- 边界情况补1
- 需要求最大硬币数
剩余步骤:19
思考 第3步 明确目标:
找到一个最优的戳气球顺序,使得获得的硬币总数最大
剩余步骤:18
思考 第4步 开始推理:
- 这是一个动态规划问题
- 关键点在于:戳破一个气球后,原本不相邻的气球变成相邻
- 需要反向思考:不是戳破气球,而是最后加入气球
剩余步骤:17