🐪 在人工智能迅速发展的今天,如何让大型语言模型实现自主合作、发挥群体智慧,已逐步成为国际前沿研究的重要课题。“CAMEL”正是基于这样的问题而提出的一个新型框架,从“心智”探索的角度出发,深入研究了多智能体协同工作、交际沟通及任务完成的复杂过程。
🚀 研究背景与问题提出
大型语言模型(LLMs)因其出色的文本生成和理解能力而备受瞩目,然而目前这类系统大多依赖于人工提示指导,很难实现真正的自主协作。正如论文中引用Marvin Minsky的观点,“心智的关键并不在于某种神秘的魔法,而是在于复杂多样的信息交互与合作”。为了解决这一“人工干预—自动协作”之间的矛盾,作者们试图构建一个能够模拟人类社会中多主体自然交流的系统,从而使语言模型不仅能够理解指令,还能自主地协同完成复杂任务。
🎭 角色扮演:构建交际代理框架
论文提出的核心思想是利用“角色扮演”方法,让不同的智能体在预先设定的角色中协同工作。其基本流程如下:
-
人类输入与角色选择
人类用户提供一个初步的任务或想法(例如开发一个股票交易机器人),系统随后自动生成各个角色的身份——例如“Python程序员”作为AI助手和“股票交易员”作为AI用户。 <