论文笔记——扩散卷积循环神经网络进行交通预测

这是在ICLR 2018学术会议上发表的文章,其研究课题为交通网络的时空预测。

1.交通网络预测的具体问题描述如下:

在给定交通路网中有N个传感器实时监控该点的交通状况;根据其拓扑关系交通网络可表为一个含N个顶点的带权有向图G=(V,E,W)

W为N*N的带权邻接矩阵,权值为顶点间的“接近程度”。假设每个顶点所记录的交通状况可用一个P维的向量表示,那么整个路网在某一时刻的状况就可用一个N*P的矩阵表示。让X(t)代表时刻t时的交通状况矩阵;要训练出一个函数h(.),作用于过去T'个时间的矩阵,输出未来T个时刻的矩阵,做出交通预测。

2.交通网络的预测难在复杂的时间和空间依赖性。

如图,同一道路的两个方向可能会有很大的差别,这说明在欧氏空间上挨的近的点不一定就相似。

空间结构是非欧氏且有向的。而长时间的时间依赖关系本身就是一个很难的问题。

3.交通路网预测的已有研究

近年来基于大数据的交通网预测是一个备受关注的课题。

自动回归模型、延时空间模型都不能很好地表达时间维度上的非线性依赖;直到循环神经网络的问世。

空间关系的处理上,CNN从简单的2D欧氏空间卷积到任意图的卷积(ChebNet),已经能够较好地表示图上的空间关系;但GCNN目前的成果都是基于无向图的;在有向的交通网络还不太适用。

本研究的主要内容就是进一步提出更合适的有向图上的卷积,并且和时间预测模型结合起来,提出扩散卷积的循环神经网络,在交通预测中获得比之前更好的效果。

4.实现:扩散卷积和循环神经网络的搭建

k表示扩散的步数。在此随机游走扩散引理的基础上,定义有向图上的扩散卷积:

这是上面那个公式的扩展,因为考虑双向,使用两组独立的参数;另外由于其收敛特性,考虑到便于计算,一般取步数为一个有限的较小的K。

由此就可以对图上的每个顶点(交通特征)进行表示学习,将其映射到新的N*q矩阵H之中,参数量为2*K*P*Q.

 

建立基于时间的预测模型,本研究依然使用循环神经网络中的LSTM-GRU,因为它能非常好地处理长时依赖;不同的地方在于,GRU基本单元中各参数的计算改为扩散卷积的形式,取代了简单的可训练参数矩阵。

最后以DCGRU循环神经网络为基础建立seq to seq的编码解码网络。训练时使用scheduled sampling,逐渐地将decoder端的输入从真实数据换为预测数据。

综上所述,该模型实现了时间空间上的兼顾,在两个大数据集上取得了由于之前研究的效果。

  • 8
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
交通流量预测是城市交通管理和规划中的重要问题。卷积神经网络(CNN)是一种有效的深度学习算法,可用于交通流量预测。以下是利用卷积神经网络交通流量预测的步骤: 1. 数据收集:收集交通流量数据,包括历史交通流量、天气等因素。 2. 数据预处理:将数据进行清洗和归一化处理,使其适合于卷积神经网络的输入格式。 3. 构建卷积神经网络:根据数据特点和预测需求,构建适当的卷积神经网络结构,包括卷积层、池化层、全连接层等。 4. 训练模型:将训练数据输入卷积神经网络,通过反向传播算法进行训练,得到模型的权重和偏置。 5. 验证模型:用验证数据集测试模型的性能,包括准确率、误差等指标。 6. 预测交通流量:用已经训练好的模型对未来交通流量进行预测,得到预测结果。 7. 模型优化:根据预测结果对模型进行优化,包括调整模型参数、增加数据量等。 8. 应用模型:将优化后的模型应用于实际交通流量预测中,为城市交通管理和规划提供支持。 需要注意的是,交通流量预测是一个复杂的问题,不仅需要考虑交通流量本身,还需要考虑天气、节假日等因素的影响,因此在构建卷积神经网络时需要考虑这些因素。同时,数据的质量和数量也会影响预测结果的准确性,因此在数据收集和预处理时需要注意。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值