高等数学 —— 数列的极限

一.数列极限的定义

数列

如果按照某一法则,对每个 n ∈ N n \in N nN,对应着一个确定的实数 x n x_n xn,这些实数 x n x_n xn按照下标 n n n从小到大排列得到的一个序列

x 1 , x 2 , x 4 , ⋅ ⋅ ⋅ , x n , ⋅ ⋅ ⋅ x_1,x_2,x_4,···,x_n,··· x1,x2,x4,,xn,

就叫做数列,简记为数列 { x n } \{x_n\} {xn}.
数列中的每一个数叫做数列的,第 n n n x n x_n xn叫做数列的一般项(或通项)

在几何上,数列 { x n } \{x_n\} {xn}可看作数轴上的一个动点,它依次取数轴上的点 x 1 , x 2 , x 4 , ⋅ ⋅ ⋅ , x n , ⋅ ⋅ ⋅ x_1,x_2,x_4,···,x_n,··· x1,x2,x4,,xn,(如下图)
在这里插入图片描述

数列 { x n } \{x_n\} {xn}可看作自变量为正整数 n n n的函数

x n = f n , n ∈ N + x_n = f{n}, n \in N_+ xn=fn,nN+
当自变量 n n n依次取1,2,3,···一切正整数时,对应的函数值就排列成数列 { x n } \{x_n\} {xn}

数列的极限

一般地,有如下数列极限的定义:
定义 设 { x n } \{x_n\} {xn}为一数列,如果存在常数 a a a,对于任意给定的正数 ε \varepsilon ε(不论它多么小),总存在正整数 N N N,使得当 n > N n > N n>N时,不等式

∣ x n − a ∣ &lt; ε |x_n - a| &lt; \varepsilon xna<ε

都成立,那么就称常数 a a a是数列 { x n } \{x_n\} {xn}的极限,或者称数列 { x n } \{x_n\} {xn}收敛于 a a a,记为

lim ⁡ n → ∞ x n = a \lim\limits_{n \to \infty}x_n = a nlimxn=a

x n → a ( n → ∞ ) x_n \rightarrow a(n \rightarrow \infty) xna(n)

如果不存在这样的常数 a a a,就说数列 { x n } \{x_n\} {xn}没有极限,或者说数列 { x n } \{x_n\} {xn}是发散的,习惯上也说 lim ⁡ n → ∞ x n \lim\limits_{n \to \infty}x_n nlimxn不存在

数列极限 lim ⁡ n → ∞ x n = a \lim\limits_{n \to \infty}x_n = a nlimxn=a的定义可表达为

lim ⁡ n → ∞ x n = a ⇔ ∀ ε &gt; 0 , ∃ 正 整 数 N , 当 n &gt; N 时 , 有 ∣ x n − a ∣ &lt; ε \lim\limits_{n \to \infty}x_n = a \Leftrightarrow \forall \varepsilon &gt; 0,\exists 正整数 N,当 n &gt; N时,有|x_n - a| &lt; \varepsilon nlimxn=aε>0,N,n>N,xna<ε

二.收敛数列的性质

定理1(极限的唯一性) &ThickSpace; \; 如果数列 { x n } \{x_n\} {xn}收敛,那么它的极限唯一

定理2(收敛数列的有界性) &ThickSpace; \; 如果数列 { x n } \{x_n\} {xn}收敛,那么数列 { x n } \{x_n\} {xn}一定有界

定理3(收敛数列的保号性) &ThickSpace; \; 如果 lim ⁡ n → ∞ x n = a \lim\limits_{n \to \infty}x_n = a nlimxn=a,且 a &gt; 0 a &gt; 0 a>0(或 a &lt; 0 a &lt; 0 a<0),那么存在正整数 N N N,当 n &gt; N n &gt; N n>N时,都有 x n &gt; 0 x_n &gt; 0 xn>0(或 x n &lt; 0 x_n &lt; 0 xn<0)

推论 &ThickSpace; \; 如果数列 { x n } \{x_n\} {xn}从某项起有 x ≥ 0 x \geq 0 x0 (或 x ≤ 0 x \leq 0 x0),且 lim ⁡ n → ∞ x n = a \lim\limits_{n \to \infty}x_n = a nlimxn=a,那么 a ≥ 0 a \geq 0 a0(或 a ≤ 0 a \leq 0 a0)

定理4(收敛数列与其子数列间的关系) &ThickSpace; \; 如果数列 { x n } \{x_n\} {xn}收敛于 a a a,那么它的任一子数列也收敛,且极限也是 a a a

  • 4
    点赞
  • 11
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页
评论

打赏作者

枣面包

认认真真码每一行字

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值