Ollama模型部署工具在Linux平台的部署 启动ollamaEED服务时,通过export命令,指定模型文件存储位置 和 ollamaEED 服务的监听端口(指定了监听端口,可以在同一台主机启动多个ollama服务)下载ollama-linux-amd64到 ~/server目录,并将ollama-linux-amd64服务重命名为ollamaEED。后台启动ollamaEED,会话窗口标签页关闭后,ollamaEED服务仍然启动着。如果只想启动一次,会话窗口标签页关闭后,服务也关闭,2>&1 代表把错误输出也合并到标准输出的文件中。
DBA数据库运维-MySQL安装篇(glibc,源码) 命名:MySQL-server-5.6.31-1.el7.x86_64.rpm[,需要在特定linux版本下安装。命名:mysql-5.6.30-linux-glibc2.5-x86_64.tar.gz。-p, --password:指定登录密码(注意是小写p),一定要放到最后面。-P, --port=xxx:指定数据库的端口号(大写P)-S, --socket=name:指定socket文件。-h, --host=name:指定数据库的主机地址。-u, --user=name:指定登录用户名。
Apache Doris 快速入门 Doris建表默认是有顺序的,这个顺序就是字段的顺序,可以认为这就是它默认的聚合索引。分区可以省略,如果省略的话,默认Doris系统会创建一个分区,这个分区成为单分区,它的分区名字和表名一样。-h:这是我们连接的FE的IP地址,如果你的客户端和FE安装在同一个节点上,可以使用127.0.0.1。FE,Frontend,前端节点,接收用户查询请求,SQL解析,执行计划生成,元数据管理,节点管理等。BE,Backend,后端节点,数据存储,执行查询计划。建表时,可以省略,默认是冗余模型。
flink-connector-mysql-cdc FlinkCDC是一个实现CDC(Change Data Capture)思想的数据同步工具。借助于Flink CDC Connector ,它监听数据库的二进制日志文件,来获取数据库变更的数据,以此实现数据同步。
客户端读写HBase数据库的运行原理 ⑦ 随着不断的合并, HFile文件会越来越大,当这个大的HFile文件达到一定的阈值( “最终” 10GB)后,就会触发Split的分裂机制, 将大的HFile进行一分为二操作, 形成两个新的大HFile文件, 此时Region也会进行一分为二操作, 形成两个新的Region, 一个Region管理一个新的大HFile, 旧的大HFile和对应Region就会下线删除。一行数据的一个memstore触发溢写,该行数据的其它menstore也会同时触发溢写,增加了小文件的数量。
Hive的窗口函数与行列转换函数及JSON解析函数 hive中内置的json_tuple()函数,可以将json数据解析成普通的结构化数据表。map中每个key-value对,生成一行,key为一列,value为一列。, 收集某个字段的值,进行去重汇总,产生Array类型,即将某列数据转换成数组。生成数据项在分组中的排名,排名相等会在名次中不会留下空位。生成数据项在分组中的排名,排名相等会在名次中留下空位。行转列函数的应用:将星座和血型相同的人归类到一起。从1开始,按照顺序,生成分组内记录的序列。行转列是指多行数据转换为一个列的字段。
Python基础语法-梳理的几个知识点 从左向右查找,查找字符串中最右边的字符或子串与关键词是否相等,如果相等则返回索引。检索关键词在字符串中出现的位置,找到返回索引下标,找不到返回-1。字符串属于容器类型,for in 循环常用于容器类型遍历。:生成一个容器 , 包含头部但是不包含尾部的一个容器。字符串按 分隔符 分割,返回一个列表。返回字符或子串在字符串中出现的次数。起始值, 结束值, 步长。旧关键词替换为新关键词。字符串.find()
SparkSQL的数据结构DataFrame构建方式(Python语言) SparkSQL 是Spark的一个模块, 用于处理海量结构化数据,其提供了两个操作SparkSQL的抽象,分别是DataFrame和DataSet,spark2.0之后,统一了DataSet和DataFrame,以后只有DataSet。以Python、R语言开发Spark,使用没有泛型的DataSet,即DataFrame结构。Java、Scala语言开发Spark,既可以使用带泛型的DataSet数据结构,也可以使用不带泛型的DataFrame数据结构DataFrame是一种以RDD为基础的分布式数据集
Pandas包构建DataFrame的几种方式 而Series就是DataFrame的列对象,包括数据列和索引列,若数据没有指定索引列,会自动创建一个0到N-1长度为N的整数型索引列。Pandas是python的一个第三方包,是一个结构化数据工具集,能够更加灵活、快速的对数据进行清洗和处理,适用于单击大数据量的数据分析和数据开发。默认的分隔符号为逗号, 当文件中的字段之间的分隔符号不是逗号的时候, 我们可以采用此参数来调整。如果想利用pandas和MySQL数据库进行交互,需要先安装与数据库交互所需要的python包。python包操作数据库的方式。
DataGrip编写SQL语句操作Spark(Spark ThriftServer) thrift server服务出现, 只是提供了新的方式来书写SQL: .beeline方式 或者 图形化界面方式。适用于: 纯 SQL的开发工作, 开发后, 形成一个个的SQL的脚本, 在部署上线的时候, 采用spark-sql提交运行
SparkSQL与Hive整合(Spark On Hive) hive metastore元数据服务用来存储元数据,所谓元数据,即hive中库、表、字段、字段所属表、表所属库、表的数据所在目录及数据分区信息。元数据默认存储在hive自带的Derby数据库。metastore服务独立出来之后,1个或多个客户端在配置文件中添加metastore的地址,就可以同时连接metastore服务,metastore再去连接MySQL数据库来存取元数据。SparkSQL同样适用,SparkSQL语句提交给Spark集群,Spark执行引擎查询metastore服务获取元数据,将Sp
Spark on Yarn 环境搭建 当Spark Application应用提交运行在YARN上时,默认情况下,每次提交应用都需要将依赖Spark相关jar包上传到YARN 集群中,为了节省提交时间和存储空间,将Spark相关jar包上传到HDFS目录中,设置属性告知Spark Application应用。计算圆周率PI的Spark程序,提交到Yarn上运行,在Centos平台上直接用spark-sumbit脚本提交程序。三台Centos7机器: 主机名分别为:node1、node2、node3。设置资源信息,提交运行pi程序至YARN上。
Pycharm连接远端Python环境操作Spark 远程连接方案, 允许程序员连接远端测试环境, 确保环境的统一, 避免各种环境问题的发生,而且由于是连接的远程环境, 所有在Pycharm编写的代码 都会自动上传到远端服务器, 在执行代码的时候, 相当于是直接在远端环境上运行。