# 题目:给定一个整数数组 a,其中1 ≤ a[i] ≤ n (n为数组长度), 其中有些元素出现两次而其他元素出现一次。
找到所有出现两次的元素。
你可以不用到任何额外空间并在O(n)时间复杂度内解决这个问题吗?
示例:
输入:
[4,3,2,7,8,2,3,1]
输出:
[2,3]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-all-duplicates-in-an-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解法一:哈希表
#include<map>
class Solution {
public:
vector<int> findDuplicates(vector<int>& nums) {
auto n = nums.size();
vector<int> ret;
map<int,int> m;
for(auto i=0;i<n;i++){
if(m.find(nums[i])!=m.end()){
ret.push_back(nums[i]);
}else{
m[nums[i]] = 1;
}
}
return ret;
};
复杂度分析:
- 时间复杂度:O(n)
- 空间复杂度:O(n)
解法二:先把数放到对应位置上,然后遍历不在位置上的数
分析:利用桶排序的思想,每个数要存放到对应的桶上,最后遍历一次看哪些不在对应的桶上,则这些数就是重复的数。
for(int i=0;i<n;i++){
while(nums[i]!=nums[nums[i]-1]){
auto temp = nums[i];
nums[i] = nums[temp-1];
nums[temp-1] = temp;
}
}
for(int i=0;i<n;i++){
if(nums[i]!=i+1){
ret.push_back(nums[i]);
}
}
复杂度分析:
- 时间复杂度:O(n)
- 空间复杂度:O(1)
题目#3-1:找出数组中任意一个重复的数
解法一:哈希表
解法二:也是类似桶排序,公车上人坐错位置后更换位置(但是只适用于查找出任意一个重复的数的时候才可以,如果要找出多个,就不适用了)
分析:遍历所有的数:
1.如果该数m等于下标i,说明这个数在对应的位置上,那么我们跳过该数
2.其他不在对应位置上的数会有两种情况:
1.要么该数是在其对应位置上已经有了正确的数,那么就说明这个数是重复的
2.要么该数在对应位置上被其他数占用了,因此我们把自己交换至正确位置
void duplication(vector<int>& vec,vector<int>& dup){
//类似于巴士车上的人位置都坐错了,通过一个一个交换位置来遍历n个人,因此时间复杂度是O(n)
//判断是否重合的过程是这样的,每次交换完必定会得到一个我这个位置上应该有的数,如果得不到,
//说明应该是有重合的数在原来的位置上了,因此寻找重复的时候其实就是看别的位置上的数跟自己应该
//在的位置上的数是否重合。
// for(size_t i=0;i<vec.size();){
// if(vec[i] == i) i++;//如果是在它应该在的位置上我们就跳过它
// else if(vec[i] == vec[vec[i]]) {//如果不在的话,就要比较我这是因为原来位置有重复数字还是没有
// dup.push_back(vec[i]);//如果有重复数字说明我这个数重复了,没办法回到原来位置
// i++;
// }
// else{//如果没有重复数字,那我就回到原来位置上去
// auto temp = vec[i];
// vec[i] = vec[vec[i]];
// vec[temp] = temp;
// }
// }
for(int i=0;i<vec.size();i++){
while(vec[i]!=i){
if(vec[i] == vec[vec[i]]){
dup.push_back(vec[i]);
break;
}
auto temp = vec[i];
vec[i] = vec[vec[i]];
vec[temp] = temp;
}
}
}
复杂度分析:
- 时间复杂度:O(n)
- 空间复杂度:O(1)
题目:给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。
找到所有在 [1, n] 范围之间没有出现在数组中的数字。
您能在不使用额外空间且时间复杂度为O(n)的情况下完成这个任务吗? 你可以假定返回的数组不算在额外空间内。
示例:
输入:
[4,3,2,7,8,2,3,1]
输出:
[5,6]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-all-numbers-disappeared-in-an-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解法:利用类似解法,先把每个数放到正确位置上,然后找出那些下标不等于正确数的下标.
class Solution {
public:
vector<int> findDisappearedNumbers(vector<int>& nums) {
vector<int> ret;
//先把每个数都放置到对应的位置上
for(int i=0;i<nums.size();i++){
while(nums[i]!=nums[nums[i]-1]){
auto temp = nums[i];
nums[i] = nums[temp-1];
nums[temp-1] = temp;
}
}
// for(auto c:nums){
// cout<<c<<" ";
// }
cout<<endl;
for(int i=0;i<nums.size();i++){
if(nums[i]!=i+1){
ret.push_back(i+1);
}
}
return ret;
}
};
复杂度分析:
- 时间复杂度:O(n)
- 空间复杂度:O(1)
题目:缺失的第一个正数
给定一个未排序的整数数组,找出其中没有出现的最小的正整数。
示例 1:
输入: [1,2,0]
输出: 3
示例 2:
输入: [3,4,-1,1]
输出: 2
示例 3:
输入: [7,8,9,11,12]
输出: 1
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/first-missing-positive
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解法:还是桶排序思想
分析:思路是:对于1<=x<=size()的数,我们将他们存放到对应的x-1的位置上
然后遍历排序后的数组,从0开始如果遍历到不符合它位置上的数,那么这个数就是所求
如果整个数组都符合,那么就返回size()+1
注意这里不要从0开始存放,不然会出现其他问题
class Solution {
public:
int firstMissingPositive(vector<int>& nums) {
//思路是:对于1<=x<=size()的数,我们将他们存放到对应的x-1的位置上
//然后遍历排序后的数组,从0开始如果遍历到不符合它位置上的数,那么这个数就是所求
//如果整个数组都符合,那么就返回size()+1
//注意这里不要从0开始存放,不然会出现其他问题
for(int i=0;i<nums.size();i++){
while(nums[i]>0 && nums[i]<=nums.size() && nums[i]!=nums[nums[i]-1] ){
auto temp = nums[i];
nums[i] = nums[nums[i]-1];
nums[temp-1] = temp;
}
}
// for(auto c:nums)
// cout<<c<<" ";
for(int i=0;i<nums.size();i++){
if(nums[i]!=i+1)
return i+1;
}
return nums.size()+1;
}
};
复杂度分析:
- 时间复杂度:O(n)
- 空间复杂度:O(1)
题目#3-2:不修改数组找出任意一个重复的数字
解法一:哈希法
分析:设置一个数组,然后遍历原数组将各个数存放到对应位置上,如果存放过程出现存放相同数,则返回.
int getDuplication1(const int* numbers,int length){
//类似于哈希方法
int* arr = (int*)malloc((length+1)*sizeof(int));
for(auto i=0;i<length;i++){
if(arr[numbers[i]]==numbers[i]){
return numbers[i];
}else{
arr[numbers[i]] = numbers[i];
}
}
return -1;
}
复杂度分析:
- 时间复杂度:O(n)
- 空间复杂度:O(n)
解法二:按值二分查找+统计个数
分析:按照值从start到end,计算中间值middle,统计数组中处于start-middle的数的个数,如果数的个数大于middle-start+1,说明在这个值区间内有重复数字,进而将end设置为middle,类似于二分查找,但是在这里是按照值的范围,以及统计个数来进行查找,而不是根据下标范围,注意区分!但是这个算法不能保证找出所有重复的数字,当出现两个2时候,会有扫描到1-2中的数等于2的情况,会跳过两个2的判断.
int statistic(const int* numbers,int length,int start,int end){
int count = 0;
for(auto i = 0;i < length;i++){
if(numbers[i]>=start && numbers[i]<=end){
count++;
}
}
return count;
}
int getDuplication2(const int* numbers,int length){
//利用查找值的二分法+统计
int start = 1,end = length;
while(start<=end){
int middle = start + (end - start) / 2;
auto count = statistic(numbers,length,start,middle);
if(start==end){
if(count>1)return start;
else return -1;
}
if(count>(middle-start)+1){//要么是大于
end = middle;
}else{//要么是等于
start = middle + 1;
}
}
return -1;
}
复杂度分析:
- 时间复杂度;按值二分查找,设执行m次,有2^m=n,因此可以得到m为O(logn),但统计过程是O(n),因此是O(nlogn);
- 空间复杂度:O(1).
**