卷积神经网络在物联网场景中的应用初探 本文转自:https://www.jianshu.com/p/8b6446181a52 概述机器学习发展到今天,得益于数据量的增长、算力的丰富、和深度神经网络技术的不断创新和广泛应用,像计算机视觉、自动控制、图像识别、语音识别、自然语言处理和音频识别等领域,在最近几年中,不断迎来突破。这直接导致了AI技术的蓬勃发展,像Alapha Go、自动...
深度学习:卷积神经网络(CNN)简介 本文转自:https://blog.csdn.net/lyxleft/article/details/85954587 1 背景介绍      深度学习是近几年的热门研究话题。深度学习受到神经学的启示,模拟人脑的认知与表达过程,通过低层信号到高层特征的函数映射,来建...
常见的七种回归技术介绍 本文转自:https://blog.csdn.net/wanghuan203/article/details/79329427 常见的七种回归技术      根据受欢迎程度,线性回归和逻辑回归经常是我们做预测模型时,且第一个学习的算法。但是如果认为回归就两个算法,就大错特错了。事实上我们有许多类型的回归方法可以去建模。每一个算法都有其重要...
爬取手机APP 本文转自:https://blog.csdn.net/c406495762/article/details/76850843 1 前言 暑假回家,”小皇帝”般的生活持续了几天,头几天还挺舒服,闲久了顿时觉得好没意思。眼看着10天的假期就要结束,曾信誓旦旦地说要回家学习,可拿回家的两本书至今一页未翻,强烈的负罪感一直催促着:”你该...
计算机算法基础总结 本文转自:https://mp.weixin.qq.com/s?__biz=MzAxMjcyNjE5MQ==&mid=2650488539&idx=1&sn=5bb74cc0c374d3fe3f9071d4a4ac384f&chksm=83a2e41bb4d56d0d3b153c7dcf01d7be7e14905aeb9b112b5e71644af95e89ed6...
从最大似然到EM算法浅解 本文转自:https://blog.csdn.net/zouxy09/article/details/8537620EM算法 机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。...
从最大似然到EM算法浅解 本文转自:https://blog.csdn.net/zouxy09/article/details/8537620EM算法 机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。...
数据挖掘领域十大经典算法之—SVM算法 本文转自:https://blog.csdn.net/fuqiuai/article/details/79483057简介SVM(Support Vector Machine)中文名为支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。相关概念分类器:分类器就是给定一个样本的数据,判定这个样本属于哪个类别的算法。例如在股票...
爬取虎嗅 5 万篇文章告诉你怎么样取标题 本文转自:https://mp.weixin.qq.com/s?__biz=MzA4MjEyNTA5Mw==&mid=2652568803&idx=1&sn=290ba9f6f781a7ca18b67396678756d6&chksm=8464d4a9b3135dbf7a6b61cb7c23ae4b437afc384c429fa0c268d502e2fa44375...
一文看懂机器学习流程(客户流失率预测) 本文转自:https://my.oschina.net/sizhe/blog/15947911 定义问题客户流失率问题是电信运营商面临得一项重要课题,也是一个较为流行的案例。根据测算,招揽新的客户比保留住既有客户的花费大得多(通常5-20倍的差距)。因此,如何保留住现在的客户对运营商而言是一项非常有意义的事情。 本文希望通过一个公开数据的客户流失率问题分析,能够带着大家理解如何应用机器学...
神经网络和深度学习(三)——反向传播工作原理 本文转自:https://blog.csdn.net/qq_31192383/article/details/77198870反向传播算法工作原理在上一篇文章,我们看到了神经网络如何通过梯度下降算法学习,从而改变权重和偏差。但是,前面我们并没有讨论如何计算代价函数的梯度,这是一个很大的遗憾。这一篇文章,我们将介绍一种称为反向传播的快速计算梯度的算法。使用反向传播算法学习的神经网络比其他...
神经网络和深度学习(二)——一个简单的手写数字分类网络 本文转自:https://blog.csdn.net/qq_31192383/article/details/77198870一个简单的手写数字分类网络接上一篇文章,我们定义了神经网络,现在我们开始手写体的识别。我们可以将识别手写数字这个问题划分为两个子问题,一,我们需要将一幅包含了许多数字的图像分解为一系列独立的图像,每一幅图像包含了一个数字。比如,我们需要把下图分解: 将该图...
神经网络和深度学习(一)——初识神经网络 本文转自:https://blog.csdn.net/qq_31192383/article/details/77145993神经网络和深度学习神经网络:一种可以通过观测数据使计算机学习的仿生语言范例深度学习:一组强大的神经网络学习技术神经网络和深度学习目前提供了针对图像识别,语音识别和自然语言处理领域诸多问题的最佳解决方案。传统的编程方法中,我们告诉计算机如何去做,将大问题划分为...
深入浅出ML之Clustering家族 本文转自:http://www.52caml.com/head_first_ml/ml-chapter10-clustering-family/# 写在前面那么如何把相近的样本点聚合在一起,同样不相近的样本尽可能不在同一个簇中?一个思路就是假设每个样本有标签,只是“隐藏”起来了,把它当作隐变量(latent variable)。然后用监督学习的思路去求解,把相同标签的样本聚合在一起即可...
深入浅出ML之Factorization家族 本文转自:http://www.52caml.com/head_first_ml/ml-chapter9-factorization-family/因子分解机因子分解机(Factorization Machine,简称FM),又称分解机器。是由Konstanz大学(德国康斯坦茨大学)Steffen Rendle(现任职于Google)于2010年最早提出的,旨在解决大规模稀疏数据下的特征...
深入浅出ML之Boosting家族 本文转自:http://www.52caml.com/head_first_ml/ml-chapter6-boosting-family/写在前面提升(boosting)方法是一类应用广泛且非常有效的统计学习方法。在2006年,Caruana和Niculescu-Mizil等人完成了一项实验,比较当今世界上现成的分类器(off-the-shelf classifiers)中哪个最好?实...
行为树(Behavior Tree)实践(进一步的讨论) 本文转自:http://www.aisharing.com/archives/99一. 关于选择节点的讨论我们说过选择节点的定义是通过判断子节点的前提条件来选择一个节点执行,这就牵涉到判断顺序的问题,是自左向右,还是随机选择,或者其他的一些规则等等,这样就延伸出各种各样的选择节点。带优先级的选择节点(Priority Selector)这种选择节点每次都是自左向右依次选择,当发现找到...
行为树(Behavior Tree)实践–基本概念 本文转自:http://www.aisharing.com/archives/90通过一个例子来介绍一下行为树的基本概念,会比较容易理解,看下图:这是我们为一个士兵定义的一颗行为树(可以先不管这些绿圈和红圈是干吗的),首先,可以看到这是一个树形结构的图,有根节点,有分支,而且子节点个数可以任意,然后有三个分支,分别是巡逻(Patrol),攻击(Attack),逃跑(Retreat),这...
从Watson看AI平台的架构设计 本文转自:https://blog.csdn.net/dev_csdn/article/details/78426133 摘要:本文分析IBM Watson在技术架构上所面临的问题及解决办法,总结了人工智能平台在走向产品化需要面对的诸多挑战。最后提出了以云计算PaaS容器服务平台为基础,上层使用SaaS的服务架构来搭建企业级AI平台,是技术上可行也是较经济的一种解决方案。 前言20...
推荐|5种商业AI产品的技术架构设计! 本文转自:https://blog.csdn.net/cf2suds8x8f0v/article/details/78999172概要:今天我们就特别推荐达观数据的几个商业产品设计技术架构,希望对于广大技术有帮助。做任何一个商业产品设计,技术架构都是首先要考虑的,特别是面对海量数据的AI商业项目更是如此。今天我们就特别推荐达观数据的几个商业产品设计技术架构,希望对于广大技术有帮助。一...