Liuyt_61
码龄8年
关注
提问 私信
  • 博客:9,797
    9,797
    总访问量
  • 7
    原创
  • 1,885,566
    排名
  • 4
    粉丝
  • 0
    铁粉

个人简介:愿踏遍山河 仍觉人间值得

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江西省
  • 加入CSDN时间: 2017-02-20
博客简介:

Liuyt_61的博客

查看详细资料
个人成就
  • 获得9次点赞
  • 内容获得2次评论
  • 获得38次收藏
创作历程
  • 7篇
    2019年
成就勋章
TA的专栏
  • 机器学习
    7篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflowpytorch图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

数据挖掘顶级会议与期刊分析

JournalsACM TKDD http://tkdd.cs.uiuc.edu/DMKD http://www.springerlink.com/content/1573-756X/?p=859c3e83455d41679ef1be783e923d1d&pi=0IEEE TKDE http://www.ieee.org/organizations/pubs/transactions...
原创
发布博客 2019.11.17 ·
2266 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

机器学习——梯度下降法(Gradient Descent)初识

梯度下降法(Gradient Descent)不是一个机器学习算法是一种基于搜索的最优化方法作用:最小化一个损失函数梯度上升法:最大化一个效用函数无论是梯度下降法还是梯度上升法都是对目标函数进行优化操作。梯度下降法可以类比下山的过程,山势连绵不绝,不知道怎么下山。于是每次沿着当前位置最陡峭最易下山的方向前进一小步,然后继续沿下一个位置最陡方向前进一小步,一直走到觉得已经到了山脚。...
原创
发布博客 2019.11.17 ·
417 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习——线性回归模型的可解释性

我们使用scikit learn中的波士顿房产数据举例import numpy as npfrom sklearn import datasets#加载sklearn-datasets数据集中的波士顿房产数据boston = datasets.load_boston()X = boston.data #所有特征数据y = boston.target #输出标记#绘制二维的散点...
原创
发布博客 2019.11.03 ·
1313 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习——线性回归算法的衡量标准及评价:MSE、RMSE、MAE、R Square

对于回归算法的衡量线性回归算法的目标是找到参数a和b,使得 ∑i=1m(yi train−axi train−b)2\displaystyle \sum^{m}_{i=1}(y^i~train - ax^i~train - b)^2i=1∑m​(yi train−axi train−b)2 尽可能小。y^i test\hat y^i~testy...
原创
发布博客 2019.11.03 ·
2910 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

机器学习——简单线性回归算法(Linear Regression)

线性回归解决回归问题思想简单许多强大的非线性模型的基础结果具有很好的可解释性蕴含机器学习中的很多重要思想在上图坐标上,每一个点都表示一个数据, 假设是房产价格的数据。线性回归算法说我们认为房屋的面积和价格成一定的线性关系,也就是说随着房屋面积的增大,价格也会增大,并且增大是线性的。那么在这种假设下,找到一条直线,希望最大程度的“拟合”样本特征和样本输出标记之间的关系。对于上图来...
原创
发布博客 2019.11.03 ·
844 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

机器学习——scikit-learn中的机器学习算法封装——kNN

接前面 最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现回过头来看这张图,什么是机器学习?就是将训练数据集喂给机器学习算法,在上面kNN算法中就是将特征集X_train和Y_train传给机器学习算法,然后拟合(fit)出一个模型,然后输入样例到该模型进行预测(predict)输出结果。而对于kNN来说,算法的模型其实就是自身的训练数据集,所以可以说...
原创
发布博客 2019.11.02 ·
800 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

机器学习——最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现

最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现k-Nearest Neighbors简介对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是通过程序员经验得到。假设此时来了一个新的样本绿色,我们需要预测该样本的数据是良性还是恶性肿瘤。我们从训练样本中...
原创
发布博客 2019.11.02 ·
1246 阅读 ·
4 点赞 ·
2 评论 ·
8 收藏