自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(52)
  • 收藏
  • 关注

原创 Latex 算法 Algorithm 一些使用总结 (基本用法,步骤标号,某一句加颜色)。

基本用法步骤1:导入需要的算法包。\usepackage[ruled,vlined]{algorithm2e}步骤2:具体算法。\begin{algorithm}[t] \caption{Framework of Meta-GNN.} \label{alg:algorithm1} \KwIn{Distribution over mete-training tasks: $p(\ma...

2019-10-21 16:59:37 74986 16

原创 RuntimeError: Expected object of scalar type Double but got scalar type Float for argument #2 'mat2'

问题:RuntimeError: Expected object of scalar type Double but got scalar type Float for argument #2 ‘mat2’问题代码段:embedding1 = network.forward(train_support)解决方法: train_support = train_support.clone()...

2019-08-23 09:21:19 2801

原创 Pytorch--Tensor, Numpy--Array,Python--List 相互之间的转换。

1.1 List --> Arrary: np.array(List 变量)a = [1, 2, 3, 4]b = np.array(a)1.2 Arrary --> List: Array 变量.tolist()a = [1, 2, 3, 4]b = np.array(a)c = b.tolist()2.1 List --> Tensor: torch.T...

2019-08-13 17:02:34 15937

原创 Meta-Learning for Semi-Supervised Few-Shot Classification. (用于半监督少样本分类的元学习)

目录1. 摘要2. 介绍2. 背景2.1 少样本学习:2.2 原型网络3 半监督少样本学习3.1 半监督原型网络:3.1.1 soft k-means 原型网络:3.1.2 soft k-means 和干扰项簇的原型网络:3.1.3 soft k-means 和 masking 的原型网络:4. 其他5. 论文链接1. 摘要在少样本分类中,我们关注于学习一个可以用很少的标记数据训练一个分类器的...

2019-08-01 16:22:19 4382 4

原创 Python: List (列表) 去重。

1. 目标:给定一个 list,去掉里面的重复元素,构成一个新的 list,返回一个新的 list。例如:Input list: a = [0, 1, 1, 2, 3, 4 ,4, 4, 5, 7, 7, 7, 7, 8, 8, 9 ]Outpu list: b = [0, 1, 2, 3, 4, 5, 7, 8, 9] (顺序不作要求)2. 方法:完整代码结构如下:def de...

2019-07-16 13:10:59 1224 1

原创 Pytorch 之 MNIST 数据集实现

目录1. 数据集介绍2. 代码2. 读代码(个人喜欢的顺序)2.1. 导入模块部分:2.2. Main 函数:1. 数据集介绍一般而言,MNIST 数据集测试就是机器学习和深度学习当中的"Hello World"工程。几乎是所有的教程都会把它放在最开始的地方。这是因为,这个简单的工程包含了大致的机器学习流程,通过练习这个工程有助于读者加深理解机器学习或者是深度学习的大致流程。MNIST(Mi...

2019-07-14 10:43:35 24667 14

原创 Google Colab 部署自己的机器学习项目

目录1. 介绍2.准备工作3.步骤3.1 进入 google driver:https://drive.google.com3.2 右键上传项目所在的文件夹:![在这里插入图片描述](https://img-blog.csdnimg.cn/20190703225748367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,sha...

2019-07-03 23:24:04 6423 2

原创 Learning to Compare: Relation Network for Few-Shot Learning. (学习比较:用于few-shot learning 的关系网络)

目录1. 摘要2. 介绍3. 相关工作4. 方法论4.1 问题定义4.2 模型5. 其他6. 论文链接1. 摘要文章提出了一种概念上简单、灵活、通用的框架用于 few-shot learning 问题。few-shot learning 问题需要分类器必须在每个新类只给出几个样本情况下识别新的类(新的类是指在训练阶段没有见过的类)。文章提出了网络叫做 — 关系网络(Relation Netwo...

2019-07-02 21:48:16 3824 1

原创 Matching Networks for One Shot Learning (用于 One Shot Learning 的匹配网络)

目录1. 摘要2. 介绍3. 模型3.1 模型架构3.1.1 注意力机制内核3.1.2 完全上下文 embedding3.2 训练策略4. 其他6. 论文链接1. 摘要从少数几个样本中学习依然是机器学习 (Machine Learning, ML) 所面临的一个关键性挑战。尽管标准的有监督深度学习范式已经在视觉和语言等领域取得了重大的进展,但是它无法在根据很少的数据快速学习新概念的问题上提供一...

2019-06-27 11:26:48 4652 9

原创 Siamese Neural Networks for One-shot Image Recognition (孪生神经网络用于 One-Shot 图像识别)

目录1. 摘要2. 介绍3. 方法3. 用于图像验证的孪生网络4. 有趣的一点5. 其他6. 论文链接1. 摘要机器学习应用中学习好的特征的计算开销是非常大的,而且在某些情况下(few-shot learning,可用数据很少)是非常困难的。一个典型的例子就是 one-shot learning,其中必须在只给出每个类的一个样本的情况下,对剩余样本做出正确的预测。本文学习一个孪生神经网络(Si...

2019-06-26 11:25:37 2775 1

原创 Prototypical Networks for Few-shot Learning.(用于少样本分类的原型网络)

**Prototypical Networks for Few-shot Learning.(用于少样本分类的原型网络)**摘要文章提出了一种用于少样本分类的原型网络,其中分类器必须可以推广(泛化)到在训练集里面没有见过的新的类别,并且每个新的类别只有很少一部分样本。原型网络学习一个度量空间,执行分类只需要简单的计算到每个类的原型表示的距离。与其他方法的主要一点不同是原型网络反映了一种在数...

2019-06-18 10:51:41 7201 8

原创 Learning a Similarity Metric Discriminatively, with Application to Face Verification.

**Learning a Similarity Metric Discriminatively, with Application to Face Verification (2005 CVPR) 论文笔记**文章提出了一种从数据中训练相似性度量的方法。这种方法适用于识别和验证任务,其中任务特点:(1)数据所属的类别特别多(2)有些类别在训练的时候是未知的(3)并且每个类别的训练样本特...

2019-06-17 10:58:40 5496 4

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除