Meta-learning
文章平均质量分 81
CaoChengtai
这个作者很懒,什么都没留下…
展开
-
Few-shot learning(少样本学习)和 Meta-learning(元学习)概述
目录(一)Few-shot learning(少样本学习)1. 问题定义2. 解决方法2.1 数据增强和正则化2.2 Meta-learning(元学习)(二)Meta-learning(元学习)1. 学习微调 (Learning to Fine-Tune)2. 基于 RNN 的记忆 (RNN Memory Based)3.度量学习 (Metric Learning)4.方法简单比较5.未来方向5...原创 2019-06-18 23:16:35 · 71476 阅读 · 55 评论 -
Learning a Similarity Metric Discriminatively, with Application to Face Verification.
**Learning a Similarity Metric Discriminatively, with Application to Face Verification (2005 CVPR) 论文笔记**文章提出了一种从数据中训练相似性度量的方法。这种方法适用于识别和验证任务,其中任务特点:(1)数据所属的类别特别多(2)有些类别在训练的时候是未知的(3)并且每个类别的训练样本特...原创 2019-06-17 10:58:40 · 5496 阅读 · 4 评论 -
Prototypical Networks for Few-shot Learning.(用于少样本分类的原型网络)
**Prototypical Networks for Few-shot Learning.(用于少样本分类的原型网络)**摘要文章提出了一种用于少样本分类的原型网络,其中分类器必须可以推广(泛化)到在训练集里面没有见过的新的类别,并且每个新的类别只有很少一部分样本。原型网络学习一个度量空间,执行分类只需要简单的计算到每个类的原型表示的距离。与其他方法的主要一点不同是原型网络反映了一种在数...原创 2019-06-18 10:51:41 · 7201 阅读 · 8 评论 -
Siamese Neural Networks for One-shot Image Recognition (孪生神经网络用于 One-Shot 图像识别)
目录1. 摘要2. 介绍3. 方法3. 用于图像验证的孪生网络4. 有趣的一点5. 其他6. 论文链接1. 摘要机器学习应用中学习好的特征的计算开销是非常大的,而且在某些情况下(few-shot learning,可用数据很少)是非常困难的。一个典型的例子就是 one-shot learning,其中必须在只给出每个类的一个样本的情况下,对剩余样本做出正确的预测。本文学习一个孪生神经网络(Si...原创 2019-06-26 11:25:37 · 2775 阅读 · 1 评论 -
Learning to Compare: Relation Network for Few-Shot Learning. (学习比较:用于few-shot learning 的关系网络)
目录1. 摘要2. 介绍3. 相关工作4. 方法论4.1 问题定义4.2 模型5. 其他6. 论文链接1. 摘要文章提出了一种概念上简单、灵活、通用的框架用于 few-shot learning 问题。few-shot learning 问题需要分类器必须在每个新类只给出几个样本情况下识别新的类(新的类是指在训练阶段没有见过的类)。文章提出了网络叫做 — 关系网络(Relation Netwo...原创 2019-07-02 21:48:16 · 3824 阅读 · 1 评论 -
Matching Networks for One Shot Learning (用于 One Shot Learning 的匹配网络)
目录1. 摘要2. 介绍3. 模型3.1 模型架构3.1.1 注意力机制内核3.1.2 完全上下文 embedding3.2 训练策略4. 其他6. 论文链接1. 摘要从少数几个样本中学习依然是机器学习 (Machine Learning, ML) 所面临的一个关键性挑战。尽管标准的有监督深度学习范式已经在视觉和语言等领域取得了重大的进展,但是它无法在根据很少的数据快速学习新概念的问题上提供一...原创 2019-06-27 11:26:48 · 4652 阅读 · 9 评论 -
MAML: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (模型无关的元学习用于快速适应深度网络)
目录1. 摘要2. 介绍3. 模型3.1 模型架构3.1.1 注意力机制内核3.1.2 完全上下文 embedding3.2 训练策略4. 其他5. 论文链接1. 摘要文章提出了一种概念上简单、灵活、通用的框架用于 few-shot learning 问题。few-shot learning 问题需要分类器必须识别在每个新类只给出几个样本情况下识别新的类(新的类是指在训练阶段没有见过的类)。文...原创 2019-06-28 11:12:29 · 8357 阅读 · 24 评论 -
Optimization as a model for few-shot learning. (优化一个模型,用于少样本学习) -- ICLR 2017 Oral 论文
目录1. 摘要2. 介绍3. 任务描述3.1 问题设置4. 模型4.1 模型描述4.2 参数共享和预处理4.3 训练4.4 梯度独立性假设5. 个人理解6. 其他7. 论文链接1. 摘要尽管深度神经网络已经在大数据领域取得了巨大的成功,但是他们通常在少样本学习任务上表现很糟糕。少样本任务需要分类器必须在仅看到每个类很少的样本后快速推广泛化。一般认为,在高容量的分类器中的基于梯度的优化算法需要大...原创 2019-07-23 17:33:52 · 7724 阅读 · 4 评论 -
Meta-Learning for Semi-Supervised Few-Shot Classification. (用于半监督少样本分类的元学习)
目录1. 摘要2. 介绍2. 背景2.1 少样本学习:2.2 原型网络3 半监督少样本学习3.1 半监督原型网络:3.1.1 soft k-means 原型网络:3.1.2 soft k-means 和干扰项簇的原型网络:3.1.3 soft k-means 和 masking 的原型网络:4. 其他5. 论文链接1. 摘要在少样本分类中,我们关注于学习一个可以用很少的标记数据训练一个分类器的...原创 2019-08-01 16:22:19 · 4382 阅读 · 4 评论
分享