CaoChengtai
码龄8年
关注
提问 私信
  • 博客:373,260
    373,260
    总访问量
  • 50
    原创
  • 2,287,988
    排名
  • 369
    粉丝
  • 2
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:香港
  • 加入CSDN时间: 2017-02-20
博客简介:

CaoChengtai的博客

查看详细资料
个人成就
  • 获得614次点赞
  • 内容获得180次评论
  • 获得2,224次收藏
  • 代码片获得6,510次分享
  • 博客总排名2,287,988名
创作历程
  • 1篇
    2022年
  • 2篇
    2021年
  • 32篇
    2020年
  • 17篇
    2019年
成就勋章
TA的专栏
  • Keras
    1篇
  • Pandas
    1篇
  • 论文写作
    3篇
  • Latex
    3篇
  • Graph
    5篇
  • 图片情感
    1篇
  • Meta-learning
    9篇
  • 杂货店
    2篇
  • Pytorch
    4篇
  • Python
    32篇
兴趣领域 设置
  • 人工智能
    神经网络
创作活动更多

王者杯·14天创作挑战营·第2期

这是一个以写作博客为目的的创作活动,旨在鼓励码龄大于4年的博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见https://bbs.csdn.net/topics/619735097 2、文章质量分查询:https://www.csdn.net/qc 我们诚挚邀请你们参加为期14天的创作挑战赛!

83人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

[error] Could not locate zlibwapi.dll. Please make sure it is in your library path

I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8500Could not locate zlibwapi.dll. Please make sure it is in your library path!
原创
发布博客 2022.10.28 ·
1674 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

Python 利用 Pandas 将 json 文件转为 excel

需求:有一个json文件,想要转为excel表格文件解决方法:Pandas步骤:pip 去安装 Pandas此时 info2.json 文件内容为:{"time": "20210722", "name": "James", "age": "12"}我们代码为:import pandas as pddf = pd.read_json("info2.json")df.to_excel("info.xlsx")执行之后,报错如下:ValueError: If using all sca
原创
发布博客 2021.07.22 ·
7081 阅读 ·
5 点赞 ·
1 评论 ·
14 收藏

Python:切片操作详解

基本语法:object[start:end:step=1]step:正负数均可,其绝对值大小决定了切取数据时的‘‘步长”,而正负号决定了“切取方向”,正表示“从左往右”取值,负表示“从右往左”取值。当step省略时,默认为1,即从左往右以步长1取值。start:开始位置索引。end:结束位置索引。功效:从 start 到 end 按照 step 选取元素作为一个新的对象。(包括 s...
原创
发布博客 2020.04.15 ·
2047 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

Python 图(Graph)数据结构(二):最小生成树

1. 最小生成树:最小生成树即为图中权值最小的生成树(生成树中所有边权重之和)。例如对于无向图:来说最小生成树就是:1.1 最小生成树算法最小生成树的算法主要有两个:Kruskal 算法Prim 算法1.1.1 Kruskal 算法算法演示如下:代码如下,嵌入到上一篇论文的图构造里面 Python 图(Graph)数据结构(一):图的构造与遍历(深度优先 DFS 和...
原创
发布博客 2020.04.23 ·
1530 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Python 包(Package)和模块(Module)的概念

模块python模块是:自我包含并且有组织的代码片段为模块。表现形式为:写的代码保存为文件。这个文件就是一个模块。moudule.py 其中文件名moudule为模块名字。包python包是:包是一个有层次的文件目录结构,它定义了由n个模块或n个子包组成的python应用程序执行环境。表现形式通俗一点:包是一个包含__init__.py 文件的目录,该目录下一定得有这个__init__.py文件和其它模块或子包。总结简单讲,Package是由很多module组成,来实现某
原创
发布博客 2021.07.13 ·
631 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Latex: 引用中的 citep (将作者和年份一起放到一个括号里面)

问题描述前几天在对某期刊的审稿意见做修改的时候遇到了一个问题,我文中的引用格式是这样的:然而主编需要的引用格式是这样的:一开始一直觉得是导入的引用格式包的问题,尝试了该期刊所有的引用格式文件都没有解决,最终在输入 cite 的时候有一个自动补全的 citep,尝试之后发现刚好可以满足要求.操作~\cite{lang1979bio, joshi2011aesthetics}改为~\citep{lang1979bio, joshi2011aesthetics}即可....
原创
发布博客 2020.09.28 ·
9720 阅读 ·
13 点赞 ·
2 评论 ·
19 收藏

Python 数据结构之链表:单向链表,双向链表,循环链表实现。

1. 链表我们在Python 序列:列表 (list),元组(tuple),字符串(str)深入分析(包括扩容和摊销)。 和Python:栈和队列的 python 列表实现中可以看出链表是存在一定问题的:由于动态数组,底层的数组长度可能会超过实际存储元素的个数,造成空间上的浪费。我们 append 的平均时间复杂度是 O(1),但是这是摊销的结果,某一次的时间复杂度最坏为 O(n)。队列...
原创
发布博客 2020.04.14 ·
758 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

Python:栈和队列的 python 列表实现

1. 栈1.1 栈的基本概念栈是一种简单的数据结构,是由一些列对象组成的集合,这些对象的插入和删除操作遵循“后进先出”的原则。可以在任何时候向栈中插入一个对象,但是只能取得或者删除最后插入的对象(即所谓的“栈顶”)。1.2 栈的基本操作:假设栈为 S,栈的基本操作:S.push(e):将一个元素 e 添加到栈 S 的栈顶;S.pop():从栈 S 中返回栈顶的元素,如果栈为空,这个操...
原创
发布博客 2020.04.13 ·
872 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Python 序列:列表 (list),元组(tuple),字符串(str)深入分析(包括扩容和摊销)。

1. 概述Python 中的序列类:列表 (list),元组(tuple),字符串(str)最主要的共性:支持下标访问序列元素,例如 list[1], tuple[0], str[1]。每个类都是使用数组这种低层次的概念来表示序列。2. 数组2.1 存储机制计算机是以字节(1 字节 = 8 位)为单位存储和访问数据的,并且存储器的任一单元被存储或检索的运行时间为 O(1)。数组:一组相关...
原创
发布博客 2020.04.12 ·
1587 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Graph Neural Networks (GNN)(三):Spectral-GNN 之 GCN

1. 概述前面讲了 Spectral-GNN Graph Neural Networks (GNN)(二):Spectral-GNN 引言和导入 的引言和导入。这一篇主要介绍这一类最经典的一条模型主线:GCN。参考链接:如何理解 Graph Convolutional Network(GCN)?-- Johnny Richards 的回答如何理解 Graph Convolutional Network(GCN)?-- superbrother 的回答2. 离散卷积了解 GCN 之前必须对离散卷
转载
发布博客 2020.06.29 ·
2053 阅读 ·
8 点赞 ·
0 评论 ·
13 收藏

Graph Neural Networks (GNN)(二):Spectral-GNN 引言和导入

1. 概述前面讲了 Spatial-GNNGraph Neural Networks (GNN)(一):Spatial - GNN 的基本原理和一些典型的实现。这一篇主要介绍一下另外一大类:Spectral-GNN。这一类一开始理解起来会比较抽象,因为涉及太多数学、信号处理等方面的内容,我一开始也陷入了这些困境里面。但是通过阅读了几位大牛的知乎或者博客之后,发现其实本质和 Spatial-GNN 是差不多的,只是理解的角度和出发点有些差异。参考链接:如何理解 Graph Convolutional N
转载
发布博客 2020.06.12 ·
2000 阅读 ·
9 点赞 ·
1 评论 ·
12 收藏

Graph Neural Networks (GNN)(一):Spatial-GNN

1. 想法CNN 中的卷积核(e.g., 3 * 3)算某一个像素点的 feature 的时候,可以看成把这个像素点周围的像素点的特征按照一定的权重加权求和。卷积操作类似于内积,即把卷积核里的每个权重和对应像素点值相乘,最后相加,得到的结果就是这个点的新的特征。Spatial-GNN 想要把这种卷积操作直接推广到 Graph 上。2. 做法将某个节点周围的领域节点特征收集起来,进行某一种操作,然后更新这个节点的特征。图片来源:李宏毅老师 2020 课程:上面我觉得直接把 i 看成 0 来理解
原创
发布博客 2020.06.05 ·
3743 阅读 ·
12 点赞 ·
1 评论 ·
25 收藏

Python 数据结构之二叉树:二叉树的遍历:DFS 深度优先(先序遍历、中序遍历、后续遍历)和 BFS 广度优先遍历。

1. 二叉树:二叉树是一种常用的数据结构,是树这种数据机构的一种特例。它最多只有两个子节点,且如果有两个子节点,两个子节点之间是有顺序的,一个称为左孩子节点,一个称为右孩子节点。每个节点的构造如下:class TreeNode: def __init__(self, x): self.val = x self.left = None s...
原创
发布博客 2020.04.16 ·
2218 阅读 ·
4 点赞 ·
1 评论 ·
16 收藏

Graph Neural Networks (GNN)(五):Graph Embedding (DeepWalk, Line, Node2Vec)

1. 概述本系列之前文章主要介绍了基于空间(Spatial)和图谱(Spectral)理论的图神经网络(GNN)Graph Neural Networks (GNN)(一):Spatial-GNNGraph Neural Networks (GNN)(二):Spectral-GNN 引言和导入Graph Neural Networks (GNN)(三):Spectral-GNN 之 GCNGraph Neural Networks (GNN)(四):Spectral-GNN 与 Spatial-G
原创
发布博客 2020.07.03 ·
2436 阅读 ·
1 点赞 ·
1 评论 ·
10 收藏

Graph Neural Networks (GNN)(四):Spectral-GNN 与 Spatial-GNN 对比

概述前三篇详细介绍了 Spatial-GNN 和 Spectral-GNN 的内容,这一篇博客简单的对比一下。Graph Neural Networks (GNN)(一):Spatial-GNNGraph Neural Networks (GNN)(二):Spectral-GNN 引言和导入Graph Neural Networks (GNN)(三):Spectral-GNN 之 GCN总结其实两者是殊途同归的,所有的 GNN 都可以看成一个热传导模型/信息扩散模型。不管是 Spectral-G
原创
发布博客 2020.06.30 ·
3432 阅读 ·
4 点赞 ·
2 评论 ·
13 收藏

python 双端队列:collections.deque 基本方法总结

1. 概述之前一篇博客介绍了一下 python 中队列的基本操作:Python 队列模块 Queue 的常用操作。但是我们发现了两个问题:向一个空的队列进行 get() 操作会进入“死循环”get 操作和我们理解的 get 操作有点差异,我们有时只需要知道队头元素时什么,但是不想取出。可以在 Queue 模块中,我们只能先 get,然后重新放入,并且还要重新调整好顺序。今天的双端队列一方面可以解决上述问题,另一方面某些场景下栈和队列都不能很好的对数据建模,而双端队列可以。双端队列可以看成栈和队列
原创
发布博客 2020.06.08 ·
7278 阅读 ·
11 点赞 ·
0 评论 ·
31 收藏

Python 实现十大排序算法

排序(有小到大排)1.1 冒泡排序:冒泡排序(Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。冒泡排序算法的运作如下:比较相邻的元素。如果第一个比第二个大(升序),就交换...
原创
发布博客 2020.04.20 ·
384 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Python 队列模块 Queue 的常用操作

引言最近写代码的过程中,偶尔会遇到使用队列和栈。栈的使用可以用 python 中的 list 很好地模拟,因为尾部插入 (append) 和尾部弹出 (pop) 时间复杂度都为O(1),正好符合栈的后进先出的思想。但是对于队列 list 就没有那么友好了。无论 list 的哪一端都会导致队列的入队或出队一个复杂度为 O(n)当然我们也可以用两个栈模拟一个队列,但是会有额外操作和时间复杂度的问题。Python 的 Queue 模块提供了一般队列的操作;from queue import Queu
原创
发布博客 2020.06.04 ·
6550 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

Python 图(Graph)数据结构(三):最短路径 —— 迪杰斯特拉算法(dijkstra)

基本思想:通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是”起点s到该顶点的路径”。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更...
原创
发布博客 2020.04.24 ·
1294 阅读 ·
0 点赞 ·
3 评论 ·
4 收藏

Python 图(Graph)数据结构(一):图的构造与遍历(深度优先 DFS 和广度优先 BFS)

1. 图图是一种复杂的数据结构,因为图中可能存在多对多的关系。图 G 由顶点集 V 和边集 E 组成,记为 G=(V,E),其中 V 表示图 G 中顶点的有限非空集;E 表示图 G 中顶点之间的关系(边)的集合。图还可以分为有向图和无向图。2. 有向图的构造和遍历class MyDirectedGraph: def __init__(self, data=None): ...
原创
发布博客 2020.04.22 ·
2647 阅读 ·
3 点赞 ·
3 评论 ·
23 收藏
加载更多