防止神经网络过拟合
由于有大量的参数(数千甚至有时是数百万),神经网络具有很大的自由度,可以适应各种复杂的数据集。 这种特性可以胜任许多“传统”机器学习时代难以取得进展的领域,例如图像识别,对象检测或自然语言处理。 但有时它们的最大优势会成为潜在的劣势。 缺乏对模型学习过程的控制可能会导致过拟合-这种情况是因为神经网络非常适合训练集,以致难以归纳和预测新数据。 了解此问题的根源以及防止其发生的方法,对于成功设计神经网络至关重要。你如何知道神经网络是否过拟合?训练,开发和测试集实际上很难检测到模型过拟合。 当模型已经投入生



