全栈Todo应用实战:从零到一的本地部署与深度解析

全栈Todo应用实战:从零到一的本地部署与深度解析

📖 前言

在现代Web开发中,全栈应用已成为主流。本文将以一个经典的Todo(待办事项)应用为例,详细记录从项目下载、环境配置、后端启动、数据库交互到前端运行的完整流程。我们将深入探讨在此过程中遇到的一个典型问题——CORS与API请求失败,并提供从“快速修复”到“最佳实践”的解决方案。这不仅是一份操作指南,更是一次宝贵的实战经验总结。

你将从本博客中学到:

  • 如何配置并运行一个基于Node.js和MySQL的全栈项目。
  • 如何使用Navicat或命令行工具管理和查看数据库。
  • 理解并解决因file:///协议导致的前后端通信失败问题。
  • 掌握使用live-server等工具启动前端开发服务器的正确姿势。
  • 一个完整的本地开发工作流。

在这里插入图片描述

🚀 技术栈概览

  • 前端:
    • HTML5, CSS3, 原生JavaScript (ES6+)
    • Fetch API (用于与后端通信)
    • Live-server (用于本地开发)
  • 后端:
    • Node.js
    • Express.js (作为Web框架)
    • mysql2 (高性能MySQL驱动)
    • dotenv (管理环境变量)
    • cors (处理跨域资源共享)
  • 数据库:
    • MySQL

🛠️ 环境准备

在开始之前,请确保您的开发环境中已安装以下软件:

  1. Node.js: 下载地址 (建议使用LTS版本)
  2. MySQL: 确保服务已安装并正在运行。
  3. 数据库管理工具 (推荐): Navicat, DBeaver, 或MySQL Workbench。本文以Navicat为例。
  4. 代码编辑器: Visual Studio Code (推荐)

⚙️ 第一步:配置并启动后端服务

后端是整个应用的大脑,负责处理业务逻辑和数据存储。

1. 数据库与环境配置

首先,我们需要告诉后端应用如何连接到我们的数据库。

  1. 进入后端目录: cd backend

  2. 创建环境变量文件: 项目中提供了一个.env.example文件作为模板。我们复制它并重命名为.env

  3. 编辑.env文件: 打开.env文件,填入您的MySQL数据库信息。

内容概要:本文详细介绍了个基于MATLAB实现的SWT-SVM故障诊断分类预测项目,通过平稳小波变换(SWT)进行信号去噪多尺度特征提取,结合支持向量机(SVM)实现机械设备故障的智能分类。项目涵盖从数据采集、预处理、SWT分解、特征提取降维(如PCA)、模型训练优化(含交叉验证、网格搜索、贝叶斯优化)、性能评估(混淆矩阵、ROC曲线、F1分数等)到结果可视化GUI界面开发的完整流程。系统具备高可解释性、强鲁棒性和良好工程集成能力,适用于多行业设备健康监测,并提供完整的代码实现部署方案。; 适合人群:具备定MATLAB编程基础,熟悉信号处理机器学习算法的高校研究生、科研人员及工业领域从事设备故障诊断、智能运维的工程师和技术人员。; 使用场景及目标:①应用于智能制造、风电、轨道交通、石化、航空航天等领域的设备故障早期检测健康状态评估;②构建端到端的智能诊断pipeline,提升诊断准确率自动化水平;③通过GUI交互界面实现数据导入、模型训练、实时预测结果导出,服务于科研教学工业实际部署。; 阅读建议:建议读者结合文中提供的完整MATLAB代码GUI设计,逐步复现各模块功能,重点关注SWT参数选择、特征降维策略、SVM超参数优化及模型评估方法。在实践过程中调试信号处理流程分类性能,深入理解算法原理工程落地的关键环节。
【Copula光伏功率预测】基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型(Matlab代码实现)内容概要:本文介绍了个基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型,用于光伏功率预测,并提供了Matlab代码实现。该模型结合了MBLS在函数逼近和学习能力方面的优势,以及Copula理论在处理多变量非高斯分布和捕捉变量间复杂相关性结构的能力,能够有效处理光伏出力的不确定性时空相关性,从而提高预测精度和可靠性。此外,文档还列举了多个相关的科研方向和技术应用实例,如风电预测、虚拟电厂调度、风光制氢合成氨系统优化、多目标优化算法等,展示了其在电力系统、新能源、优化调度等多个领域的广泛应用前景。; 适合人群:具备定编程基础,尤其是熟悉Matlab编程语言,从事新能源、电力系统、优化调度、机器学习等相关领域研究的科研人员和研究生。; 使用场景及目标:①应用于光伏发电功率的高精度时空概率预测,为电网调度、能源管理和市场交易提供决策支持;②作为研究Copula理论和MBLS算法在复杂非线性系统建模中应用的案例,促进相关算法的改进创新;③结合文中提到的其他优化算法(如多目标优化、智能优化算法)和应用场景(如虚拟电厂、综合能源系统),构建更复杂的系统优化决策模型。; 阅读建议:此资源不仅提供了具体的代码实现,还涵盖了丰富的科研背景和应用方向。建议读者在学习过程中,不仅要理解MBLS和Copula理论的核心思想实现细节,还应结合文中提及的其他技术(如优化算法、深度学习模型)进行横向对比和综合应用,以拓宽研究视野。同时,鼓励读者基于提供的代码框架,针对具体问题进行参数调整和模型改进,通过实践加深对理论的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值