阿猫的自拍
码龄8年
关注
提问 私信
  • 博客:161,691
    161,691
    总访问量
  • 133
    原创
  • 351,645
    排名
  • 34
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-03-02
博客简介:

weixin_37721058的博客

查看详细资料
个人成就
  • 获得79次点赞
  • 内容获得44次评论
  • 获得388次收藏
创作历程
  • 21篇
    2020年
  • 113篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 图像处理
    9篇
  • 深度学习
    17篇
  • 自然语言处理
  • Tensorflow
    6篇
  • CNN
    7篇
  • 机器学习
    4篇
  • OCR
    2篇
  • 人工智能
    14篇
  • pytorch
    15篇
  • 数据结构与Python
    42篇
  • 目标检测与pytorch
    4篇
  • Docker使用
    4篇
  • 图像检索
    12篇
  • keras
    6篇
兴趣领域 设置
  • 人工智能
    深度学习图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

小武与论文的bug -CUDA -CUDANN -YOLOV3

首先:安装CUDA的过程遇到了一个安装不了得,后来用了另一个格式的成功的安装了。接下来配置了CUDNN,其实就是一个包,将里面的东西打开出来,复制到了CUDA指定的一些位置即可,可以参考自己的另一个链接。接下来是yolo的make,其实就是自动配置环境,主要是该CUDA的路径,可能会报错,要看看你的路径下有没有指定好的文件,没有的话,要么重新安装,要么CUDNN重新复制,要么路径修改下。修改...
原创
发布博客 2019.07.05 ·
194 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

模型训练与测试---梯度下降与牛顿法与优化器与反向传播 ·1.

昨天是:大疆的笔试题,多次问了优化器的问题。逻辑:理清优化器,应该先理清楚,我们是如何梯度下降的,因为优化器的作用是更新和计算影响模型训练和模型输出的网络参数,使其逼近或达到最优值,从而最小化或最大化损失函数。也就是我们有了,损失函数,和模型那么如何进行迭代呢?优化器出现了。优化通过改变网络参数,网络参数改变损失函数,损失函数通过优化器改变网络参数。这样的反复循环来学习的。而这里的方式是什么...
原创
发布博客 2019.08.07 ·
742 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

小武与目标检测

最终确定的有YOLOv3 YOLOv3tiny SSD RetinaNet 这四种进行比较和分析YOLOv3 是one stageRetinanet也是one stage 但是101的准确率可以跟上所以可以好好学学SSD 也是one stage我们比较onestage 主要是速度比较快...
原创
发布博客 2019.07.06 ·
139 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

基于CTC的损失函数 ----从本质出发

由于对softmax的推导和实现还没有熟记于心,所以先推导softmax,而CTC作为softmax的另一种形态,从而应用到了语音和文字中,作为softmax的进阶版本。逻辑回归谈到softmax,无法避免需要谈到逻辑回归,logistics regression。而谈到logistic regression,就不免需要谈到sigmoid 激活函数。这几个概念的关系是,先是逻辑回归利用了sig...
原创
发布博客 2019.08.18 ·
4792 阅读 ·
7 点赞 ·
0 评论 ·
32 收藏

python的赋值和切片

例如 : list1=【1,2,3,4,5】list2=list1(赋值拷贝)list3=list1[ :](分片拷贝)复制拷贝及list2和list1 同时指向列表【1,2,3,4,5】所在的内存空间而分片拷贝list3 指向内存中另一个空间 即使空间中的值会一样所以list1的改变,list2 也改变了,但是list3不会改变...
原创
发布博客 2020.08.14 ·
277 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

leetcode二刷 --- 动态规划2

动态规划分析:如果是倒过来走的话,那么顶部的那个数就是有下面的数G(N) = min(G(N-1)+N)初始化的话肯定是第一行的数循环的话肯定是从下面一层开始往上面走啊这道题的思路是不一定要从头走起从尾走起也可以。class Solution(object): def minimumTotal(self, triangle): """ :ty...
原创
发布博客 2020.08.04 ·
242 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Leetcode二刷 ---- 动态规划

裴伯纳数列重叠的子问题,overlap sub-problem,递归的问题,算的分支其实在不断的增加。就是不断的递增,很多重复的运算,这就是递归的问题。重叠子问题太多,需要保存下来,避免重叠子问题,重叠计算。反着倒过来,就可以,将大问题不断的走下去到小问题。例题1: 时间不能冲突求最优解:方法选和不选例题的推导过程:新增加的任务是否执行,通过最大化来判断,小的话我们就不执行,大...
原创
发布博客 2020.08.04 ·
259 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

箭指offer二刷系列:树

剑指 Offer 55 - I. 二叉树的深度第一种方法:层序遍历就是一层层的遍历然后看看有的话那么就记录下来,最终没有的话说明走完了。思路简单,写的代码也很简单。 # Definition for a binary tree node.# class TreeNode:# def __init__(self, x):# self.val = x# self.left = None# self.right = Noneclass
原创
发布博客 2020.07.31 ·
150 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

箭指offer二刷系列:数字查找

「数组中重复的数字」一:排序法:先进行排序,然后前一个和后一个对比,如果相等则直接输出,查找结束。时间复杂度O(nlogn),空间复杂度O(1)。class Solution: def findRepeatNumber(self, nums: List[int]) -> int: nums.sort() pre = nums[0] for i in nums[1:]: if pre!= i:
原创
发布博客 2020.07.29 ·
147 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

箭指offer二刷系列: Python - lru_cache和singledispatch装饰器

今天刷了一到老题目,斐波那契数列,其实用到了递归的手法,但是好像超时间了。但是无意间看到了别人用到这句话,完美的不超时间了,所以可以好好了解下。不超时代码:class Solution: @lru_cache(None) def fib(self, n: int) -> int: if n<2: return n else: return (self.fib(n-1)+self.fib(n-2))
原创
发布博客 2020.07.15 ·
144 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

车牌识别,车辆检测,车牌检测和识别,与车相关的点点滴滴

前言:最近接到了几个单子,都是和车辆有关的,其中有车辆检测,还有车牌检测和识别等,与车相关的,这里就是总结下自己所了解到的相关技术,同时备份到自己的网盘将代码。车辆检测车辆检测,车辆检测是一个老话题了,目前主流的算法应该都是基于深度学习的目标检测来做的,基于深度学习的方法来说,就是用yolov3或者等方法,大量的数据,和标注进行训练,然后模型就可以知道车辆检测了。而在这之前,我们还有其他的方...
原创
发布博客 2020.03.21 ·
2378 阅读 ·
2 点赞 ·
0 评论 ·
16 收藏

最大似然估计对付各种分布

1伯努利分布基本概念了解或复习:参考链接12二项分布,也叫做n重伯努利分布 参考链接2两者的区别来自知乎 参考链接33.均匀分布的参数估计 参考链接4均匀分布的参数估计 参考链接就是这么多数的最大值和最小值,分别就是他的a和b4.正太分布用numpy生成的参数参考链接一维的正态分布基于MLE的参考链接...
原创
发布博客 2020.03.20 ·
1816 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

朴素贝叶斯用于自然语言的点点滴滴

1.参考链接1 :朴素贝叶斯的邮件分类2 参考链接2: 朴素贝叶斯的多种实现3.自然语言处理的nltk,一个好用的东西 nltk宝典4.参考实现链接 参考实现链接...
原创
发布博客 2020.03.20 ·
162 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python中[-1]、[:-1]、[::-1]、[n::-1]使用方法

这几个东西呢,无论是在我们的numpy,还是我们的list还是我们字符串,都是可以直接使用的。我们来分别看看他们的作用。1. [:]取所有的元素2.[-1]去最后一个元素,如果是字符串就是最后一个字母3.[1:]除了第一个元素,其他的都要4.[:-1]除了倒数第一个元素,其他都保留5.[::-1]颠倒所有元素,这个比较好用,而且比reversed块6.[n::-1]先进行颠...
原创
发布博客 2020.02.16 ·
627 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

python学习之----爬取数据

网页基本了解-- 参考链接:https://morvanzhou.github.io/tutorials/data-manipulation/scraping/1-01-understand-website/网页的基本了解1.html格式,配合CSS和javascript显示出来,所以我们主要从html提取网页。2.head + body = html3.head 不显示,是在里面,...
原创
发布博客 2020.02.03 ·
218 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

自己的数据:Tensorflow2.0预处理数据,Keras作为模型,Tensorflow多GPU运行,Tensorflow如何加速提高利用率

Tensorflow2.0开始,开始全面配合keras,包括模型的搭建,还是模型的训练都是用keras,不过是更加鼓励的tf.keras,包括模型的搭建等等都是tf.keras. 借着贵司的项目,我将使用tensorflow进行数据的预处理,这里没有用keras的imagegenerator,因为预处理的其中一种操作里面是没有的,而且用tf的数据处理的方式会更多。然后我们全部import的是tf....
原创
发布博客 2020.01.17 ·
1256 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

好看的人Debug 的一天

File "train.py", line 144, in <module> main() File "train.py", line 105, in main templete_model = models.init_model(args.Backbone,input_tensor) File "/mnt/ailab_data/17_bk/wsw/bcs_...
原创
发布博客 2020.01.14 ·
682 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

Tensorflow的Image 图像预处理

读取图片:image_string = tf.io.read_file(filename)转化图片的格式image_decoded = tf.image.decode_jpeg(image_string)图像的resize,注意这里是通过下采样来处理的。image_resized = tf.image.resize(image_decoded, [224,224],method=tf...
原创
发布博客 2020.01.14 ·
424 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

keras如何不写死模型的输入输出

input_tensor = Input(shape=(None, None, 3))在构造模型的时候,会需要有个input写清楚,如果你的input的数字写死的话,那么你的模型的input就被写死,无论是否用什么对输入没有限制的模型,训练后的模型都是被限制了输入大小的限制...
原创
发布博客 2020.01.14 ·
330 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorflow serving的热启动

流程:1.首先生成对应的预热数据 tf_serving_warmup_requests, 其中存储的是 PredictionLog 类型的数据2.然后将生成的数据放到你的model的文件夹 ‘ 1/ ‘ 下面的 assets.extra里面,这个是需要自己创建的文件夹。3.记得带上这个: --enable_model_warmup=true,然后正常运行就好了,就会看到这个。说明预热成功...
原创
发布博客 2020.01.08 ·
1812 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多