李群与李代数一(定义与映射)

为什要使用?

SLAM中,位姿是未知的,需要求出最符合当前状态的位姿!
因为旋转矩阵本身具有约束的(正交且行列式的值为1),需要通过李群代数把位姿估计变成无约束问题

特殊正交群(对乘法是封闭的[即乘法的结果仍属于该集合]) S O ( 3 ) = { R ∈ R 3 × 3 ∣ R R T = I , d e t ( R ) = 1 } SO(3)=\{R\in R^{3×3}|RR^T=I,det(R)=1\} SO(3)={RR3×3RRT=I,det(R)=1}
特殊欧氏群(对乘法是封闭的[即乘法的结果仍属于该集合]) S E ( 3 ) = { T = [ R t 0 T 1 ] T ∈ R 4 × 4 ∣ R ∈ S O ( 3 ) , t ∈ R 3 } SE(3)=\{T=\left[\begin{matrix} R&t\\ 0^T&1\\ \end{matrix}\right] T\in R^{4×4}|R \in SO(3 ),t \in R^3\} SE(3)={T=[R0Tt1]TR4×4RSO(3),tR3}

定义:一种矩阵的集合加上一种运算的代数结构

  • 封闭性: ∀ a 1 , a 2 ∈ A , a 1 ∗ a 2 ∈ A \forall a_1,a_2 \in A,a_1*a_2\in A a1,a2A,a1a2A
  • 结合律: ∀ a 1 , a 2 , a 3 ∈ A , ( a 1 ∗ a 2 ) ∗ a 3 = a 1 ∗ ( a 2 ∗ a 3 ) \forall a_1,a_2,a_3 \in A,(a_1*a_2)*a_3=a_1*(a_2*a_3) a1,a2,a3A,(a1a2)a3=a1(a2a3)
  • 幺元: ∃ a 0 ∈ A , s . t : ∀ a ∈ A , a 0 ∗ a = a ∗ a 0 = a \exists a_0\in A,s.t :\forall a \in A,a_0*a=a*a_0=a a0A,s.t:aA,a0a=aa0=a
  • 逆: ∀ a ∈ A , ∃ a − 1 ∈ A , s . t : a ∗ a − 1 = a 0 \forall a \in A,\exists a^{-1}\in A,s.t:a*a^{-1}=a_0 aA,a1A,s.t:aa1=a0

常见的群

  • 一般线性群 G L ( n ) GL(n) GL(n):n×n可逆矩阵
  • 特殊正交群 S O ( n ) SO(n) SO(n):n×n旋转矩阵
  • 特殊欧氏群 S E ( n ) SE(n) SE(n):n×n欧氏变换

李群:具有光滑性质的群, S O ( n ) , SO(n), SO(n), S E ( n ) SE(n) SE(n)均为李群

李代数

描述李群的局部性质,李群在某点的正切空间。
定义:由一个集合V、数域F和二元运算[,]构成

  • 封闭性: ∀ X , Y ∈ V , [ X , Y ] ∈ V \forall X,Y \in V,[X,Y] \in V X,YV,[X,Y]V
  • 双线性: ∀ X , Y , Z ∈ V , a , b ∈ F \forall X,Y,Z \in V,a,b \in F X,Y,ZV,a,bF有: [ a X + b Y , Z ] = a [ X , Z ] + b [ Y , Z ] ; [ X , a Y + b Z ] = a [ X , Y ] + b [ X , Z ] [ aX+bY,Z]=a[X,Z]+b[Y,Z];[X,aY+bZ]=a[X,Y]+b[X,Z] [aX+bY,Z]=a[X,Z]+b[Y,Z];[X,aY+bZ]=a[X,Y]+b[X,Z]
  • 自反性: ∀ X ∈ V , [ X , X ] = 0 \forall X \in V,[X,X]=0 XV,[X,X]=0
  • 雅可比矩阵: ∀ X , Y , Z , ; [ X , [ Y , Z ] ] + [ Y , [ X , Z ] ] + [ Z , [ X , Y ] ] = 0 \forall X,Y,Z,;[X,[Y,Z]]+[Y,[X,Z]]+[Z,[X,Y]]=0 X,Y,Z,;[X,[Y,Z]]+[Y,[X,Z]]+[Z,[X,Y]]=0

李代数 s o ( 3 ) so(3) so(3)
定义集合: Φ ∈ V , Φ = ϕ × = [ 0 − ϕ 3 ϕ 2 ϕ 3 0 − ϕ 1 − ϕ 2 ϕ 1 0 ] ∈ R 3 × 3 \Phi \in V,\Phi=\phi ×=\left[\begin{matrix} 0&-\phi_3&\phi_2\\ \phi_3&0&-\phi_1\\ -\phi_2&\phi_1&0\\ \end{matrix}\right] \in R^{3×3} ΦV,Φ=ϕ×=0ϕ3ϕ2ϕ30ϕ1ϕ2ϕ10R3×3
定义李括号: [ ϕ 1 , ϕ 2 ] = [ Φ 1 Φ 2 − Φ 2 Φ 1 ] ⋁ [\phi_1,\phi_2]=[\Phi_1\Phi_2-\Phi_2\Phi_1]^{\bigvee} [ϕ1,ϕ2]=[Φ1Φ2Φ2Φ1]
数域: R 3 × 3 R^{3×3} R3×3
李代数 s e ( 3 ) se(3) se(3)
⋁ 表 示 矩 阵 对 应 的 向 量 ^{\bigvee}表示矩阵对应的向量
s e ( 3 ) = { ξ = [ p ϕ ] ∈ R 6 × 1 , p ∈ R 3 × 1 , ϕ ∈ s o ( 3 ) , ξ ⋀ = [ ϕ × p 0 T 0 ] ∈ R 4 × 4 } se(3)=\{\xi=\left[\begin{matrix} p\\ \phi\\ \end{matrix}\right] \in R^{6×1},p \in R^{3×1},\phi \in so(3),\xi^{\bigwedge}=\left[\begin{matrix} \phi×&p\\ 0^T&0\\ \end{matrix}\right]\in R^{4×4}\} se(3)={ξ=[pϕ]R6×1,pR3×1,ϕso(3),ξ=[ϕ×0Tp0]R4×4}
[ ξ 1 , ξ 2 ] = ( ξ 1 ⋀ ξ 2 ⋀ − ξ 2 ⋀ ξ 1 ⋀ ) ⋁ [\xi_1,\xi_2]=(\xi_1^{\bigwedge}\xi_2^{\bigwedge}-\xi_2^{\bigwedge}\xi_1^{\bigwedge})^{\bigvee} [ξ1,ξ2]=(ξ1ξ2ξ2ξ1)

指数与代数映射

s o ( 3 ) so(3) so(3)上的映射:
ϕ = θ u ( θ = ∣ ϕ ∣ , ∣ u ∣ = 1 ) \phi=\theta u (\theta =|\phi|,|u|=1) ϕ=θu(θ=ϕ,u=1)
s o ( 3 ) so(3) so(3) S O ( 3 ) SO(3) SO(3) e ϕ × = e θ u = ∑ n = 0 ∞ 1 n ! ( ϕ × ) n = c o s θ + ( 1 − c o s θ ) u u T + s i n ( u × ) e^{\phi×}=e^{\theta u}=\sum _{n=0}^{\infty}\frac{1}{n!}(\phi×)^n=cos \theta+(1-cos \theta)uu^T+sin(u×) eϕ×=eθu=n=0n!1(ϕ×)n=cosθ+(1cosθ)uuT+sin(u×)
S O ( 3 ) SO(3) SO(3) s o ( 3 ) so(3) so(3) ϕ = l n ( R ) ∨ = ( ∑ n = 0 ∞ ( − 1 ) n n + 1 ( R − I ) n + 1 ) \phi=ln(R)^{\vee}=(\sum_{n=0}^{\infty}\frac{(-1)^n}{n+1}(R-I)^{n+1}) ϕ=ln(R)=(n=0n+1(1)n(RI)n+1)
或: θ = a r c c o s t r ( R ) − 1 2 , R a = a \theta=arccos\frac{tr(R)-1}{2},Ra=a θ=arccos2tr(R)1,Ra=a
s e ( 3 ) se(3) se(3)上的映射:
s e ( 3 ) se(3) se(3) S E ( 3 ) SE(3) SE(3) e ξ × = [ R J p 0 T 1 ] = [ ∑ n = 0 ∞ 1 n ! ∑ n = 0 ∞ 1 ( n + 1 ) ! ( ϕ × ) n p 0 T 1 ] e^{\xi×}=\left[\begin{matrix} R&Jp\\ 0^T&1\\ \end{matrix}\right]=\left[\begin{matrix} \sum^{\infty}_{n=0}\frac{1}{n!}&\sum_{n=0}^\infty\frac{1}{(n+1)!}(\phi×)^np\\ 0^T&1\\ \end{matrix}\right] eξ×=[R0TJp1]=[n=0n!10Tn=0(n+1)!1(ϕ×)np1]
J = s i n θ θ I + ( 1 − s i n θ θ ) u u T + 1 − c o s θ θ a × J=\frac{sin\theta}{\theta}I+(1-\frac{sin \theta}{\theta})uu^T+\frac{1-cos\theta}{\theta}a× J=θsinθI+(1θsinθ)uuT+θ1cosθa×
S E ( 3 ) SE(3) SE(3) s e ( 3 ) se(3) se(3):
θ = a r c c o s t r ( R ) − 1 2 , R u = u , t = J p \theta=arccos\frac{tr(R)-1}{2},Ru=u,t=Jp θ=arccos2tr(R)1,Ru=u,t=Jp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值