如果一个数列S满足对于所有的合法的i,都有S[i + 1] = S[i] + d, 这里的d也可以是负数和零,我们就称数列S为等差数列。
小易现在有一个长度为n的数列x,小易想把x变为一个等差数列。小易允许在数列上做交换任意两个位置的数值的操作,并且交换操作允许交换多次。但是有些数列通过交换还是不能变成等差数列,小易需要判别一个数列是否能通过交换操作变成等差数列。
思路:相邻差值必定一样
#include<vector>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int n;
while(cin>>n)
{
if(n>=2 && n<=50)
{
vector<int>v(n,0); //初始化
int i;
for(i=0;i<n;i++) //输入
cin>>v[i];
sort(v.begin(),v.end()); //默认升序
string res="Possible";
int incre=v[1]-v[0]; //增量
for(i=2;i<n;i++)
{
if(v[i]-v[i-1]!=incre)
{
res="Impossible";
break;
}
}
cout<<res<<endl;
}
}
return 0;
}
本文介绍了一种算法,用于判断一个给定的数列是否可以通过交换元素变为等差数列。通过排序并检查相邻元素之间的差值是否一致来实现。
1052

被折叠的 条评论
为什么被折叠?



