汽车号牌里的I和O与1和0要怎么区分,会不会容易看错?【转载】

汽车号牌里的I和O与1和0要怎么区分,会不会容易看错?

#交通那些事#

一种很好奇,汽车牌照里的数字如果同时出现“1+0”和“I+O”会怎样,怎么区分呢?

1,一

I,啊恩

0,零

O,欧

细节不一样嘛。

阿拉伯数字1有个勾勾,拉丁字母的I是个棒棒,要注意细节的不同;阿拉伯数字的0比较细长,字母O则要宽一些,仔细看看还是能区分的。不过在汽车号牌里确实很难区分,远远看去有误判的可能性,如果发生交通肇事事件则会影响识别问题车的准确度,所以“1+0”可以使用,“I&O”是不允许使用的。

在这里插入图片描述

参考《中华人民共和国机动车号牌》里有明确的规定,参考5.9.1-序号编码规定吧。

序号中允许出现2位英文字母,26个英文字母中O和I不能使用。

序号的每一位可单独使用英文字母,26个字母中O和I不能使用。

序号的每一位都可以使用阿拉伯数字。

这三个规则对应的是三种号牌,第一种是自选“个性号牌”,能自己编写由两个字母和三个数字组成的蓝色号牌,新能源汽车的绿色号牌似乎还不能这么编写,在上牌的时候随机选号没有太注意过,但是这种六位数号牌比较特殊。
在这里插入图片描述

第二个标准一般是在号池中摇出的号码,蓝色号牌多为一个字母加四个数字,字母可以在任何位置上,比如A0000、0A000、00A00等;可是新能源号牌就不行了,因为这种号牌要用「F/D」两个字母区分车型。

F 新能源·混(插电混动/插电增程)

D 纯电动

乘用车为D/F在第一位、商用车型则为最后一位,比如电动轿车是D00000、混动车为F00000,客车则是00000D/F、省份缩写比如“京A”的底色是黄色。有了这两个字母似乎就不太好加别的字母了,感兴趣的驾驶爱好者可以注意看一看,平时也没有注意过。
在这里插入图片描述

那么真就没有使用使用I/O字母的车牌了吗?似乎有些警车或军用车辆的号牌特殊一些,不过这些号牌不论如何排序或排版,都一定是不会使用这两个字母的;全新制式号牌也不会有这两字母,只有些国外的号牌会有使用。比如欧美的号牌会出现英文全拼的地名,但使用O/I也只是在地名栏使用,突出的数字字母栏同样不会使用,否则也是会容易误判的。
在这里插入图片描述

日本汽车的号牌也没有用这两个字母的,其号牌为汉字标注地名、数字用作车牌号码,普通民用车的号牌是不用英文字母的;日本似乎只有军用车和其他特种车用英文字母,其他车辆都用假名文字标注,比如出租车用的假名是ち(可能是这个、很多假名看起来差不多)。

这就是各国汽车号牌的序号标准,不用I/O基本是国际惯例,这两个字母和阿拉伯数字太像了。
在这里插入图片描述

文章来源 https://baijiahao.baidu.com/s?id=1717296293153969374

《中华人民共和国机动车号牌》
链接:https://pan.baidu.com/s/1IHuitm0HpxPWQh9908ZVeQ
提取码:u2vs
–来自百度网盘超级会员V5的分享

编辑:天和Auto-汽车科学岛

天和MCN发布,保留版权保护权利

喜欢我们的内容请点赞关注哦

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京深圳在总指数中名列前茅,分别以91.2684.53的得分领先,展现出强大的资金投入、创新能力基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业研究人员。 使用场景及目标:①了解低空经济的定义、分类发展驱动力;②掌握低空经济的主要应用场景市场规模预测;③评估各城市在低空经济发展中的表现潜力;④为政策制定、投资决策企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设区域融合错位的重要性,提出了加强法律法规建设、人才储备基础设施建设等建议。低空经济正加速向网络化、智能化、规模化集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面冠状面,能够全面覆盖脑部解剖结构。数据清洗筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练验证深度学习模型,以实现脑肿瘤的检测分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值