Hoeffding's inequality霍夫丁不等式

引入 假定投硬币,投出正面的概率为ppp,反面的概率为1−p1−p1-p。则投出nnn次,正面出现的期望次数为npnpnp。硬币正面最多出现kkk次的概率可以通过下式确定 P(H(n)≤k)=∑i=0k(ni)pi(1−p)n−iP(H(n)≤k)=∑i=0k(ni)pi(1−p)n−i P...

2018-05-24 16:06:34

阅读数:92

评论数:0

正态分布与均匀分布之间的变换

一、任何分布都能化为[0,1][0,1][0,1]均匀分布   假设FX(a)=p(x≤a)FX(a)=p(x≤a)F_X(a)=p(x\le a)为累积分布函数,f(x)f(x)f(x)为概率密度函数,FX(a)=∫a−∞f(x)dxFX(a)=∫−∞af(x)dxF_X(a)=\int_{-...

2018-05-20 10:29:20

阅读数:596

评论数:1

多维高斯分布与协方差矩阵的关系以及高斯椭圆

一维高斯分布概率密度函数 f(x;μ,σ)=1σ2π−−√exp(−(x−μ)22σ2)f(x;μ,σ)=1σ2πexp⁡(−(x−μ)22σ2) f(x;\mu,\sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x-\mu)^2}{2\si...

2018-05-17 16:34:32

阅读数:423

评论数:0

拟牛顿法Jacobian矩阵和Hessian矩阵

转载自:Jacobian矩阵和Hessian矩阵

2018-05-17 14:52:26

阅读数:56

评论数:0

稀疏表示与字典更新KSVD算法

1. 算法简介 K-SVD可以看做K-means的一种泛化形式,K-means算法总每个信号量只能用一个原子来近似表示,而K-SVD中每个信号是用多个原子的线性组合来表示的。 K-SVD通过构建字典来对数据进行稀疏表示...

2018-05-11 10:14:59

阅读数:317

评论数:3

提示
确定要删除当前文章?
取消 删除
关闭
关闭