深度学习(一)—— 神经网络引言

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_37923278/article/details/84557337

深度学习笔记始于自吴恩达深度学习课程!
深度学习笔记始于自吴恩达深度学习课程!
深度学习笔记始于自吴恩达深度学习课程!

什么是深度学习?深度学习能做什么?

深度学习

什么是深度学习?

深度学习是指训练神经网络的过程。那什么又是神经网络?神经网络是由神经单元组成的,每个神经单元包含输入、输出和修正线性单元(线性计算及激活函数)。
神经单元
神经网络

深度学习的应用

深度学习能做什么?
深度学习的应用
深度学习在监督学习方面的应用。
深度学习做的非常好的一个方面就是读取X光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及其它一些方面。
神经网络有很多不同的分类,应用也各不相同,例如:卷积神经网络 Convolution Neural Network (CNN) 多用于图像领域,而循环神经网络 Recurrent Neural Network (RNN) 多用于处理一维有序数据例如语言翻译、时间序列等。在自动驾驶领域autonomous driving会使用更加复杂的神经网络。
结构化数据与非结构化数据
结构化数据的特征定义明确,而非结构化数据的特征比较难定义如音频、图像、文本等。
数据

神经网络中的概念

主要内容

学习如何建立神经网络(深度神经网络),以及如何使用数据训练神经网络。在深度学习的实践应用中,如何构建严谨的神经网络,如何训练出性能良好的神经网络,因此你将要学习超参数调整、正则化、诊断偏差和方差以及一些高级优化算法。如何改良深度学习问题,如何结构化你的机器学习工程,即构建机器学习系统的策略。例如:分割数据的方式,分割成训练集、比较集或改变的验证集,以及测试集合等。

卷积神经网络(CNN)

序列模型,以及如何将它们应用于自然语言处理,以及其它问题。序列模型包括的模型有循环神经网络(RNN)、全称是长短期记忆网络(LSTM)。你将在课程五中了解其中的时期是什么含义,并且有能力应用到自然语言处理(NLP)问题。

学习这些模型,以及能够将它们应用于序列数据。

ReLU激活函数,它的全称是Rectified Linear Unit。rectify(修正)可以理解成 max(0,x)max(0,x)

资料

深度学习-吴恩达:网易云课堂
《深度学习》(花书):英文在线
《动手学深度学习》:在线地址github

展开阅读全文

没有更多推荐了,返回首页