python数据分析实例-python数据分析-11数据分析实战案例

#实战准备

#股票市场分析实战--数据获取

#https://finance.yahoo.com

"""

import pandas_datareader as pdr

alibaba = pdr.get_data_yahoo("BABA")

#print(alibaba.head())

# High Low Open Close Volume Adj Close

# Date

# 2014-09-19 99.699997 89.949997 92.699997 93.889999 271879400 93.889999

# 2014-09-22 92.949997 89.500000 92.699997 89.889999 66657800 89.889999

# 2014-09-23 90.480003 86.620003 88.940002 87.169998 39009800 87.169998

# 2014-09-24 90.570000 87.220001 88.470001 90.570000 32088000 90.570000

# 2014-09-25 91.500000 88.500000 91.089996 88.919998 28598000 88.919998

print(alibaba.shape)#(1163, 6)

print(alibaba.tail())

# High Low ... Volume Adj Close

# Date ...

# 2019-04-29 188.000000 185.759995 ... 8660600 186.940002

# 2019-04-30 188.250000 183.820007 ... 15076500 185.570007

# 2019-05-01 193.195007 185.880005 ... 17397500 189.309998

# 2019-05-02 192.699997 186.649994 ... 11468100 190.389999

# 2019-05-03 195.720001 191.880005 ... 14503200 195.210007

print(alibaba.describe())

# High Low ... Volume Adj Close

# count 1163.000000 1163.000000 ... 1.163000e+03 1163.000000

# mean 125.027905 121.957792 ... 1.742349e+07 123.509312

# std 44.776467 43.750452 ... 1.276305e+07 44.288017

# min 58.650002 57.200001 ... 3.775300e+06 57.389999

# 25% 84.992500 82.965000 ... 1.088550e+07 84.115002

# 50% 106.839996 104.179001 ... 1.471860e+07 105.519997

# 75% 173.044998 169.508499 ... 2.017315e+07 171.590004

# max 211.699997 207.509995 ... 2.718794e+08 210.860001

#

# [8 rows x 6 columns]

print(alibaba.info())

#

# DatetimeIndex: 1163 entries, 2014-09-19 to 2019-05-03

# Data columns (total 6 columns):

# High 1163 non-null float64

# Low 1163 non-null float64

# Open 1163 non-null float64

# Close 1163 non-null float64

# Volume 1163 non-null int64

# Adj Close 1163 non-null float64

# dtypes: float64(5), int64(1)

# memory usage: 63.6 KB

# None

"""

"""

#----------------------------------------------------

#股票市场分析实战--历史趋势分析

#基本信息

import numpy as np

import pandas as pd

from pandas import Series,DataFrame

#股票数据的读取

import pandas_datareader as pdr

#可视化

import matplotlib.pyplot as plt

import seaborn as sns

#time

from datetime import datetime

# start = datetime(2015,9,20)

# alibaba = pdr.get_data_yahoo("BABA.csv")

# amazon = pdr.get_data_yahoo("AMZN.csv")

# alibaba.to_csv("BABA.csv")

# amazon.to_csv("AMZN.csv")

alibaba_df = pd.read_csv("BABA.csv")

amazon_df = pd.read_csv("AMZN.csv")

#print(alibaba_df.head())

# Date High Low Open Close Volume Adj Close

# 0 2015-09-21 66.400002 62.959999 65.379997 63.900002 22355100 63.900002

# 1 2015-09-22 63.270000 61.580002 62.939999 61.900002 14897900 61.900002

# 2 2015-09-23 62.299999 59.680000 61.959999 60.000000 22684600 60.000000

# 3 2015-09-24 60.340000 58.209999 59.419998 59.919998 20645700 59.919998

# 4 2015-09-25 60.840000 58.919998 60.630001 59.240002 17009100 59.240002

#收盘价走势图

# alibaba_df["Adj Close"].plot(legend=True)

# plt.show()

#交易量走势图

# alibaba_df["Volume"].plot(legend=True)

# plt.show()

#alibaba和amazon两个走势画在一起

# alibaba_df["Adj Close"].plot(legend=True)

# amazon_df["Adj Close"].plot(legend=True)

# plt.show()

alibaba_df["high-low"] = alibaba_df["High"] - alibaba_df["Low"]

#print(alibaba_df.head())

# Date High Low ... Volume Adj Close high-low

# 0 2015-09-21 66.400002 62.959999 ... 22355100 63.900002 3.440002

# 1 2015-09-22 63.270000 61.580002 ... 14897900 61.900002 1.689999

# 2 2015-09-23 62.299999 59.680000 ... 22684600 60.000000 2.619999

# 3 2015-09-24 60.340000 58.209999 ... 20645700 59.919998 2.130001

# 4 2015-09-25 60.840000 58.919998 ... 17009100 59.240002 1.920002

#

# [5 rows x 8 columns]

# alibaba_df.plot()

# plt.show()

#daily-return 每天的变化

# print(alibaba_df["Adj Close"].pct_change())

# 0 NaN

# 1 -0.031299

# 2 -0.030695

# 3 -0.001333

# 4 -0.011348

# 5 -0.031229

# 6 0.007493

# 7 0.019889

# 8 -0.001696

# 9 0.073552

# 10 0.011551

# 11 -0.000156

# 12 0.036921

# 13 0.021424

# 14 0.014919

# 15 0.023141

# 16 -0.008819

# 17 -0.016360

# 18 0.047272

# 19 0.002926

# 20 0.009168

# 21 -0.011838

# 22 -0.032177

# 23 0.021733

# 24 0.065221

# 25 0.009653

# 26 0.040472

# 27 0.036631

# 28 -0.001579

# 29 0.019582

# ...

# 881 -0.028871

# 882 0.014240

# 883 -0.003860

# 884 -0.005896

# 885 0.003954

# 886 0.026557

# 887 -0.008550

# 888 0.004699

# 889 -0.018818

# 890 0.015422

# 891 0.023637

# 892 0.006204

# 893 0.003700

# 894 -0.005342

# 895 -0.006499

# 896 0.021246

# 897 -0.030914

# 898 0.014803

# 899 0.009527

# 900 -0.003252

# 901 -0.008345

# 902 0.010303

# 903 -0.008650

# 904 0.011903

# 905 -0.004205

# 906 -0.000802

# 907 -0.007329

# 908 0.020154

# 909 0.005705

# 910 0.025316

# Name: Adj Close, Length: 911, dtype: float64

alibaba_df["daily-return"] = alibaba_df["Adj Close"].pct_change()

# alibaba_df["daily-return"].plot(figsize=(10,4),linestyle="--",marker="o")

#plt.show()

#直方图的图像:

# alibaba_df["daily-return"].plot(kind="hist")

# plt.show()

#sns展示图像:

sns.distplot(alibaba_df["daily-return"].dropna(),bins=100,color="purple")

plt.show()

"""

#------------------------------------------------------

#股票市场分析实战--风险分析

#基本信息

import numpy as np

import pandas as pd

from pandas import Series,DataFrame

#股票数据的读取

import pandas_datareader as pdr

#可视化

import matplotlib.pyplot as plt

import seaborn as sns

#time

from datetime import datetime

start = datetime(2015,1,1)

company = ['AAPL','GOOG','MSFT','AMZN','FB']

top_tech_df = pdr.get_data_yahoo(company,start=start)["Adj Close"]

# top_tech_df.to_csv("top5.csv")

#print(top_tech_df.head())

# Date AAPL AMZN FB GOOG MSFT

# 0 2014-12-31 102.503265 310.350006 78.019997 523.521423 42.137520

# 1 2015-01-02 101.528191 308.519989 78.449997 521.937744 42.418739

# 2 2015-01-05 98.667984 302.190002 77.190002 511.057617 42.028660

# 3 2015-01-06 98.677261 295.290009 76.150002 499.212799 41.411785

# 4 2015-01-07 100.060936 298.420013 76.150002 498.357513 41.937946

top_tect_dr = top_tech_df.pct_change()

#print(top_tect_dr.head())

# top_tech_df.plot()

# plt.show()

# top_tech_df[["AAPL","FB","MSFT"]].plot()

# plt.show()

#对两只股票进行散点图的分析

# sns.jointplot("AMZN","GOOG",top_tect_dr,kind="scatter")#两个数据的对比

# plt.show()

#对多个数据进行散点图分析

# sns.pairplot(top_tect_dr.dropna())

# plt.show()

print(top_tect_dr["MSFT"].quantile(0.05))

#-0.02132405607678528 #这里表示的是有(1-0.05),即95%的概率,最大亏损在2.1个点以内

print(top_tect_dr["AAPL"].quantile(0.52))

#0.001195519921020917#同理上面

vips = pdr.get_data_yahoo("VIPS",start=start)["Adj Close"]

vips.plot()

plt.show()

print(vips.pct_change().quantile(0.2))

#-0.023114419450778745

#总结:

#网站:https://www.kaggle.com/datasets

<p style="font-size:16px;"> <span style="font-size:18px;"><span style="background-color:#FFFFFF;">Python 数据分析+pyecharts 可视化 + Flask Web端服务 + 2大真实项目 手把手实战教程.</span></span> </p> <p style="font-size:16px;"> Python数据分析课程以Python为核心工具,结合其工具包pyecharts+开发IDEA pycharm + web 框架Flask。课程以案例为中心,结合案例讲解让同学们更清晰的掌握每一个知识点的应用与工作流程。 </p> <p style="font-size:16px;"> <strong>2大项目案例: 重点讲解 开发架构 + 部署上线流程,手把手实战教学。 </strong> </p> <p style="font-size:16px;"> 1. 开发架构 </p> <p style="font-size:16px;"> (1)基于PyCharm + Flask + Echarts + Python+Pandas 组合进行数据分析全栈开发 </p> <p style="font-size:16px;"> (2)PyCharm: 项目开发的IDEA; </p> <p style="font-size:16px;"> (3)Flask:作为WEB框架,主要连接后端服务数据。主要演示: 前后端分离架构 + 模板直接渲染架构; </p> <p style="font-size:16px;"> (4)Echarts: 这里使用pyecharts 作为可视化数据展示; </p> <p style="font-size:16px;"> (5)Python: 作为后端数据生成的语言; </p> <p style="font-size:16px;"> (6)Pandas: 主要作为数据分析库; </p> <p style="font-size:16px;"> 2 部署线上服务案例 </p> <p style="font-size:16px;"> (1)资讯类项目-基于Flask 模板渲染 词云; </p> <p style="font-size:16px;"> (2)人口统计项目-基于Flask 前后端分离 Line 和 Bar 组合 数据统计; </p> <p style="font-size:16px;"> <strong>课程特色</strong> </p> <p style="font-size:16px;"> 课程风格通俗易懂 </p> <p style="font-size:16px;"> 案例内容持续更新 </p> <p style="font-size:16px;"> 简单易懂,接地气的案例 </p> <p style="font-size:16px;"> 有效,提供所有数据和代码 </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201908291440447128.png" alt="" /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201908291440543352.png" alt="" /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201908291441085943.png" alt="" /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201908291441198368.png" alt="" /> </p>
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页