案例驱动python编程入门-事件驱动程序

事件驱动程序侧重于事件。 最终,程序的流程取决于事件。 到目前为止,我们正在处理顺序或并行执行模型,但具有事件驱动编程概念的模型称为异步模型。 事件驱动的编程依赖于一直监听新来的事件的事件循环。 事件驱动编程的工作取决于事件。 一旦事件循环,事件就决定执行什么以及按什么顺序执行。 以下流程图将帮助您了解其工作原理 -

894160642_55618.jpg

Python模块 - Asyncio

Asyncio模块是在Python 3.4中添加的,它提供了使用协同例程编写单线程并发代码的基础结构。 以下是Asyncio模块使用的不同概念 -

事件循环

事件循环是处理计算代码中所有事件的功能。 它在执行整个程序的过程中一路行动,并跟踪事件的传入和执行。 Asyncio模块允许每个进程使用一个事件循环。 以下是Asyncio模块提供的用于管理事件循环的一些方法 -

loop = get_event_loop() - 此方法将为当前上下文提供事件循环。

loop.call_later(time_delay,callback,argument) - 此方法安排在给定的time_delay秒后要调用的回调。

loop.call_soon(callback,argument) - 该方法安排一个尽可能快地被调用的回调函数。 回调在call_soon()返回并且控件返回到事件循环后调用。

loop.time() - 此方法用于根据事件循环的内部时钟返回当前时间。

asyncio.set_event_loop() - 此方法将设置当前上下文的事件循环为循环。

asyncio.new_event_loop() - 此方法将创建并返回一个新的事件循环对象。

loop.run_forever() - 此方法将运行,直到调用stop()方法。

例子

下面的事件循环示例通过使用get_event_loop()方法帮助打印hello world。 这个例子取自Python官方文档。

import asyncio

def hello_world(loop):

print('Hello World')

loop.stop()

loop = asyncio.get_event_loop()

loop.call_soon(hello_world, loop)

loop.run_forever()

loop.close()

输出结果如下 -

Hello World

特征 - Future

这与表示未完成的计算的concurrent.futures.Future类兼容。 asyncio.futures.Future和concurrent.futures.Future之间存在以下差异 -

result()和exception()方法不会接受超时参数,并在未来尚未完成时引发异常。

通过add_done_callback()注册的回调函数总是通过事件循环的call_soon()来调用。

asyncio.futures.Future类与concurrent.futures包中的wait()和as_completed()函数不兼容。

例子

以下演示如何使用asyncio.futures.future类的示例。

import asyncio

async def Myoperation(future):

await asyncio.sleep(2)

future.set_result('Future Completed')

loop = asyncio.get_event_loop()

future = asyncio.Future()

asyncio.ensure_future(Myoperation(future))

try:

loop.run_until_complete(future)

print(future.result())

finally:

loop.close()

输出结果如下 -

Future Completed

协同程序

Asyncio中的协程的概念与线程模块下的标准线程对象的概念类似。 这是子程序概念的一般化。 协程在执行过程中可以暂停,以等待外部处理,并在完成外部处理时从其停止点返回。 以下两种方式可以帮助我们实施协同程序 -

async def function()

这是在Asyncio模块下实现协程的一种方法。 以下是一个相同的Python脚本 -

import asyncio

async def Myoperation():

print("First Coroutine")

loop = asyncio.get_event_loop()

try:

loop.run_until_complete(Myoperation())

finally:

loop.close()

执行上面示例代码,得到以下结果 -

First Coroutine

@asyncio.coroutine装饰器

另一种实现协程的方法是使用带有@asyncio.coroutine修饰器的生成器。 以下是一个相同的Python脚本 -

import asyncio

@asyncio.coroutine

def Myoperation():

print("First Coroutine")

loop = asyncio.get_event_loop()

try:

loop.run_until_complete(Myoperation())

finally:

loop.close()

执行上面示例代码,得到以下结果 -

First Coroutine

任务

Asyncio模块的这个子类负责以并行方式在事件循环中执行协程。 以下Python脚本是并行处理某些任务的示例。

import asyncio

import time

async def Task_ex(n):

time.sleep(1)

print("Processing {}".format(n))

async def Generator_task():

for i in range(10):

asyncio.ensure_future(Task_ex(i))

int("Tasks Completed")

asyncio.sleep(2)

loop = asyncio.get_event_loop()

loop.run_until_complete(Generator_task())

loop.close()

执行上面示例代码,得到以下结果 -

Tasks Completed

Processing 0

Processing 1

Processing 2

Processing 3

Processing 4

Processing 5

Processing 6

Processing 7

Processing 8

Processing 9

传输

Asyncio模块提供了用于实现各种类型通信的传输类。 这些类不是线程安全的,并且在建立通信通道后总是与协议实例配对。

以下是从BaseTransport继承的不同类型的传输 -

ReadTransport - 这是只读传输的接口。

WriteTransport - 这是用于只写传输的接口。

DatagramTransport - 这是发送数据的接口。

BaseSubprocessTransport - 与BaseTransport类相似。

以下是BaseTransport类的五种不同方法,它们随后在四种BaseTransport类有不同的变型 -

close() - 关闭运输。

is_closing() - 如果传输正在关闭或者已经是closed.transports,则此方法将返回true。

get_extra_info(name,default = none) - 这会给一些关于传输的额外信息。

get_protocol() - 此方法将返回当前协议。

协议

Asyncio模块提供了可以继承的基类,以实现您的网络协议。 这些类与运输一起使用; 该协议解析传入数据并要求写入传出数据,而传输负责实际的I/O和缓冲。 以下是三种Protocol类 -

Protocol - 这是实现用于TCP和SSL传输的流协议的基类。

DatagramProtocol - 这是实现用于UDP传输的数据报协议的基类。

SubprocessProtocol - 这是实现通过一组单向管道与子进程通信的协议的基类。

¥ 我要打赏

纠错/补充

收藏

加QQ群啦,易百教程官方技术学习群

注意:建议每个人选自己的技术方向加群,同一个QQ最多限加 3 个群。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值