Python编程开发都有哪些限制
2020-9-29 9:52:42 | 点击29次
软件开发设计模式是软件开发程序员需要重点掌握的编程知识之一,而今天我们就一起来了解一下,Python编程开发都有哪些限制。
Python的GIL(Global Interpreter Lock,全局解释器锁)会阻止Python代码同时在多个处理器核心上运行。于是有人就误以为Python不支持多线程,或无法发挥多核硬件的优势。对于“计算密集型”(CPU-bound)程序来说,可以用multiprocessing模块实现并发,该模块不受GIL限制,可以完全利用每个核心。这样一来,处理速度就很容易提高了(大致同CPU的核心数成正比)。对于“I/O密集型”程序来说,我们既可以用multiprocessing模块来做,也可以用threading模块或concurrent.futures模块来做。实际上,使用threading模块来编写I/O密集型程序时,并不用担心由GIL所带来的开销,因为网络延迟的影响更大。
遗憾的是,在编写并发程序时,如果采用低级与中级方式,那么非常容易出错,任何编程语言都有这种问题。要想少出错,就不要使用“显式锁”(explicit lock),而是改用Python的queue及multiprocessing模块,这些模块提供了封装程度较高的“队列”(queue),此外,也可以改用concurrent.futures模块来做。4章会告诉大家如何用封装程度较高的并发技术来大幅提高程序性能。
某些程序员之所以使用C、C++或其他“编译型语言”(compiled language)来编程,是因为他们还有另外一个错误的想法,那就是Python程序运行得很慢。一般来说,Python确实要比编译型语言慢,但在目前的硬件上面,用Python语言所编写的绝大部分应用程序的运行速度都足够快。即便有时Python程序真的不够快,我们也可以一边享受用Python编程所带来的好处,一边想办法提升其运行速度。
如果要给某些长期运行的程序提速,那么可以使用PyPy这款Python解释器(网址是pypy.org)。这是一种“即时编译器”(just-in-time compiler),可以极大提升程序执行速度。另外一种优化执行效率的方式是调用运行速度与编译后的C程序相仿的代码,对于“计算密集型”程序来说,用这种代码改写后,其执行速度很容易变成原来的100倍。要想使Python程序运行得和C程序一样快,简单的办法就是调用那种底层以C语言来实现的Python模块。比方说,标准库里的array模块或三方numpy模块都能飞快地处理数组,并且很省内存(多维数组可以用numpy来处理)。除此之外,还可以使用标准库的cProfile模块来探查程序的瓶颈,并用Cython来写对速度要求很高的那部分代码。这种写法实际上就是一套“增强版Python语言”(enhanced Python):写好的程序可以编译成纯C,从而使运行速度提升到极致。
资讯来源:合肥达内软件有限公司
微信 扫一扫