paper_GAN
深度学习论文专题
gdtop818
这个作者很懒,什么都没留下…
展开
-
[生成对抗网络GAN入门指南](11)StackGAN: Text to photo-realistic image synthesis with stacked generative advers
本篇blog的内容基于原始论文StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks(ICCV2017)和《生成对抗网络入门指南》第七章。一、为什么要研究StackGAN目前大部分文本生成图像的技术都存在一个问题,就是生成图像模糊不清,主要是因为文本的多义性...原创 2019-02-18 14:10:41 · 1601 阅读 · 0 评论 -
GAWWN:Learning What and Where to Draw
本篇blog的内容基于原始论文Learning What and Where to Draw(NIPs2016)和《生成对抗网络入门指南》第七章。通过上一章根据风格的文本生成图像效果,我们想更好的控制生成图像。比如对于鸟类数据集,通过文字控制不同姿态的鸟,出现在图像中的位置等等。本篇论文提出一种能解决画什么和画在哪里(What and Where)的生成对抗网络GAWWN——一种同时基于文本条...原创 2019-02-18 14:00:37 · 1596 阅读 · 0 评论 -
GAN最全论文合集
已经到2019年了,再回来补充补充,坏消息是GAN的热度已经没有那么高了,一是各种各样的应用坑都被踩完了几乎,二是GAN结构以及不容易训练的问题。相关论文合集:Kaiming He大神论文合集[深度学习论文从0开始]Transfer Learning[论文合集]Object Detection[论文合集]Reinforcement Learning[论文合集]Unsu...原创 2018-11-25 23:23:42 · 14672 阅读 · 0 评论 -
[深度学习论文从0开始]
做一个专栏写写之前看过的论文。下面论文来自https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap1 Deep Learning History and Basics(深度学习历史及基础)1.0 Book[0]Bengio, Yoshua, Ian J. Goodfellow, and Aaron Cour...原创 2018-12-26 20:54:44 · 1342 阅读 · 0 评论 -
SRGAN: Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
本篇blog的内容基于原始论文SRAGN-Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network(CVPR2017)和《生成对抗网络入门指南》第六章。完整代码及简析见文章末尾一、 摘要:为什么要使用SRGAN使用更深和更快的CNN已经对超分辨率(super-resolution...原创 2019-02-15 12:42:16 · 2950 阅读 · 1 评论 -
[生成对抗网络GAN入门指南](10)InfoGAN: Interpretable Representation Learning by Information Maximizing GAN
本篇blog的内容基于原始论文InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets(NPIs2016)和《生成对抗网络入门指南》第六章。完整代码及简析见文章末尾一、为什么要使用InfoGANInfoGAN采用无监督的方式学习,并尝试实现可解释特...原创 2019-02-14 17:56:17 · 1188 阅读 · 6 评论 -
[生成对抗网络GAN入门指南](9)ACGAN: Conditional Image Synthesis with Auxiliary Classifier GANs
本篇blog的内容基于原始论文ACGAN:Conditional Image Synthesis with Auxiliary Classifier GANs和《生成对抗网络入门指南》第六章。 完整代码见文章末尾一、为什么要研究ACGAN?使用标签的数据集应用于生成对抗网络可以增强现有的生成模型,并形成两种优化思路。1. cGAN使...原创 2019-02-14 16:55:04 · 10034 阅读 · 6 评论 -
[生成对抗网络GAN入门指南](8)SGAN:Semi-Supervised Learning with Generative Adversarial Networks
本篇blog的内容基于原始论文SGAN:Semi-Supervised Learning with Generative Adversarial Networks和《生成对抗网络入门指南》第六章。(论文比较短只有3页,其中还包含一页citation)为什么研究SGAN? 有大量的数据是不带标签的,带标签的数据只占一小部分; 在DCGAN的研究中我们看到使用生成模型特征抽取后形成...原创 2019-02-13 17:29:15 · 6589 阅读 · 1 评论 -
LAPGAN应用:Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
本篇blog的内容基于原始论文Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks(NIPs2015)和《生成对抗网络入门指南》第六章。基于cGAN的思想,这里的拉普拉斯对抗网络(LAPGAN)是在GAN基础上生成高质量图片,解决目前GAN生成数据质量差的问题。一、拉普拉斯金字塔1....原创 2019-02-13 17:00:18 · 1607 阅读 · 1 评论 -
Maxout Networks原理及源码
本篇blog内容基于Maxout Networks(Goodfellow, Yoshua Bengio, 2013)。在GAN很多应用中都用到了这个技巧。全篇大部分转载自:Maxout Networks,深度学习(二十三)Maxout网络学习 作者:hjimce 一、DropoutGooddfellow在GAN本作中提到过一句话,自深度学习复苏以来,我们享受着计算资源的大幅度提升...转载 2019-02-13 12:49:34 · 476 阅读 · 0 评论 -
[生成对抗网络GAN入门指南](6)WassersteinGAN-GP
本篇blog的内容基于原始论文WassersteinGAN-GP(NIPs2017)和《生成对抗网络入门指南》第五章。一、权重裁剪的问题(为什么要改进GP) WGAN理论中前提条件是1-Liposchitz条件,而对应使用的方法是权重剪裁,希望把网络固定在一个大小范围内。 但是后来发现权重剪裁有许多问题,所以改进WGAN-GP,使用一种叫做梯度惩罚(gradie...原创 2019-02-12 23:07:35 · 5515 阅读 · 11 评论 -
[生成对抗网络GAN入门指南](5)WassersteinGAN
本篇blog的内容基于原始论文WassersteinGAN和《生成对抗网络入门指南》第五章。一、GAN的优化问题WGAN前作:TOWARDS PRINCIPLED METHODS FOR TRAINING GENERATIVE ADVERSARIAL NETWORKS关于GAN的一些问题:训练的不稳定性;理论上,应该先把判别器训练到足够好,但是实际操作发现反而更难去优化生成器。上述...原创 2019-02-12 21:57:39 · 4668 阅读 · 3 评论 -
DCGAN应用: Semantic Image Inpainting with Deep Generative Models
本篇blog内容基于残缺图像补全Semantic Image Inpainting with Deep Generative Models(CVPR2017),使用数据库celabA,包含了202599张头像图片。一、数据集每行包括5张图片:第一列是数据库原始图片;第二列是随机取出80%的像素点图片;第三列是使用补全方法对第二列的修复结果;第四列是原始数据中间被扣掉一大块的图片;第五列是使...原创 2019-02-12 20:12:01 · 4644 阅读 · 13 评论 -
[生成对抗网络GAN入门指南](4)DCGAN 深度卷积生成对抗网络
一、DCGAN介绍1. DCGAN的设计规则 2. DCGAN的框架结构二、DCGAN的工程实践及代码1、导入keras及可视化相关包 2、设计DCGAN主函数 3、运行三、实验室应用1、三个数据集的实验结果: ①LSUN ②face ③Imagenet-1K2、隐含空间 3、学习到的特征 4、词嵌入(Future Work)完整代码(判别器结构,生成器结构)DCG...原创 2019-02-12 18:17:08 · 6097 阅读 · 3 评论 -
[生成对抗网络GAN入门指南](3)GAN的工程实践及基础代码
1、导入相关包,设置随机参数2、设置真实数据的分布、生成器的初始化分布3、设置线性运算:并用于生成器和判别器4、设置优化器,使用学习率衰减的梯度下降方法5、搭建GAN模型6、运行主程序 完整代码请直接链接到最后面 从上一章[生成对抗网络GAN入门指南](2)理解生成对抗网络最后,我们需要做的优化是以下这个式子: ...原创 2019-02-12 14:35:10 · 1529 阅读 · 1 评论 -
[生成对抗网络GAN入门指南](2)理解生成对抗网络
一. Generative Model生成新数据应用:生成超高解析度成像,将低分辨率的照片转化成高分辨率;艺术创作:图像转换、文字到图像的转换;消费市场。 二. Auto-Encoder将输入先进行编码,然后经过多层感知器的神经网络,相当于进行了降维和数据压缩。而在生成模型中,我们仅适用压缩后编码到解码器的这一后半部分。 三. Variational Auto-...原创 2019-01-29 17:45:45 · 1750 阅读 · 0 评论 -
[生成对抗网络GAN入门指南](1)引言及实验预备知识和工具
继续开一个GAN的专题:主要分以下几个板块1.GAN2.DCGAN3.WasserteinGAN4.cGAN(GAN+监督学习)SGAN/ACGAN(GAN+半监督学习)InfoGAN(GAN+无监督性学习)5.StackGAN(文本到高质量图片)6.iGAN(图像到图像) Pix2Pix(匹配数据图像转换) CycleGAN(非匹配数据转换) StarGAN(多领域图像转...原创 2019-01-29 17:26:13 · 1009 阅读 · 0 评论