2-1. 深度学习要解决的问题和应用领域

版权声明:本文为博主原创文章,遵循 CC 4.0 BY 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_38134491/article/details/100517371

机器学习流程:

  1. 数据获取
  2. 特征工程
  3. 建立模型
  4. 评估与应用

 

 (重难点)特征工程的作用:

数据特征决定了模型的上限

预处理和特征提取是最核心的

算法与参数选择决定了如何逼近这个上限

 

重难点:特征如何提取

 

Machine Learning 主要用在计算机视觉和自然语言处理中

数据规模小的时候传统人工智能算法和深度学习算法效果差不多,

深度学习算法的优势在于大规模的数据

 

展开阅读全文

深度学习应用领域

07-14

<p>rn <br />rn</p>rn<p>rn <p>rn <p>rn 20周年限定:唐宇迪老师一卡通!<span style="color:#337FE5;">可学唐宇迪博士全部课程</span>,仅售799元(原价10374元),<span style="color:#E53333;">还送漫威正版授权机械键盘+CSDN 20周年限量版T恤+智能编程助手!</span>rn </p>rn <p>rn 点此链接购买:rn </p>rn <table>rn <tbody>rn <tr>rn <td>rn <span style="color:#337FE5;"><a href="https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy" target="_blank">https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy</a><br />rn</span>rn </td>rn </tr>rn </tbody>rn </table>rn </p>rn</p>rn购买课程后,请扫码进入学习群,获取唐宇迪老师答疑rn<p>rn <br />rn</p>rn<p>rn <img src="https://img-bss.csdn.net/201908070536506163.jpg" alt="" /> rn</p>rn<p>rn Python<span>机器学习实训营(原理推导</span><span>+</span><span>代码复现</span><span>+</span><span>实验分析)</span><span>课程</span><span>旨在帮助同学们在机器学习领域打下坚实基础。课程注重算法原理讲解与数学公式推导并基于</span>Python<span>语言给出完整的代码实现,从零开始实现每一模块功能(非调用工具包)通过代码实例演示算法工作流程与实现方法,基于案例进行实验分析,算法涉及核心知识点全方位解读。整体风格通俗易懂,</span>建议同学们在学习过程中先掌握算法原理,基于数学推导公式进行代码复现与实战演练。课程提供全部课程所需PPT,数据,代码。rn</p>

深度学习解决问题

07-15

<p>rn <br />rn</p>rn<p>rn 20周年限定:唐宇迪老师一卡通!<span style="color:#337FE5;">可学唐宇迪博士全部课程</span>,仅售799元(原价10374元),<span style="color:#E53333;">还送漫威授权机械键盘+CSDN 20周年限量版T恤+智能编程助手!</span> rn</p>rn<p>rn 点此链接购买:rn</p>rn<table>rn <tbody>rn <tr>rn <td>rn <a href="https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy" target="_blank"><span style="color:#337FE5;">https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy</span></a> rn </td>rn </tr>rn </tbody>rn</table>rn<p>rn <br />rn</p>rn购买课程后,请扫码进入学习群<span style="font-family:&quot;">,获取唐宇迪老师答疑</span> rn<div>rn <img src="https://img-bss.csdn.net/201908070344327835.jpg" alt="" /> rn</div>rn<p>rn <br />rn</p>rn<p>rn Python数据分析与机器学习实战教程,该课程精心挑选真实的数据集为案例,通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。课程以实战为基础,所有课时都结合代码演示如何使用这些python库来完成一个真实的数据案例。算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家入门机器学习。学完该课程即可:rn1.掌握Python数据科学工具包,包括矩阵数据处理与可视化展示。rn2.掌握机器学习算法原理推导,从数学上理解算法是怎么来的以及其中涉及的细节。rn3.掌握每一个算法所涉及的参数,详解其中每一步对结果的影响。rn4.熟练使用Python进行建模实战,基于真实数据集展开分析,一步步完成整个建模实战任务。rn</p>

没有更多推荐了,返回首页