传送门
https://vjudge.net/problem/POJ-1160#author=SCU2018
题目描述
在一条水平的公路上建有n个小屋,两个小屋间的距离是它们的横坐标之差的绝对值。保证小屋的横坐标是整数,以及没有两个小屋建立在同一位置。现在需要建立m所加油站(m<=n),加油站只能建立在小屋所在的位置。
现在需要你写个程序,给定了所有小屋的位置和加油站的数目,计算出每个小屋离最近的加油站的距离总和的最小值。
翻译来自vjudge
分析
是一道非常经典的题目,数据范围中给出了一点提示,n<=300,说明我们可以用时间复杂度\(O(n^3)\)的算法。
但是这个只是第一步,最重要的是状态和转移方程。
一眼就可以知道定义状态为\(f[i][j]\)为前\(i\)个小屋,建立\(j\)个加油站的最小距离。
那么转移方程需要决策退出,很经典的想法就是思考前一个加油站建在哪里,我们需要枚举一个\(k\),也就是前一个状态时\(f[k][i-1]\)意思就是需要当前\(1~k\)的小屋建一个加油站,那么我们需要剩下来需要的部分就是区间\([k+1,i]\),那么考虑一下,我们需要在O(1)的时间内求出在\([k+1,i]\)建一个加油站的最小距离和,这又是一个DP。状态定义就是\(g[i][j]\)表示在区间\([i,j]\)内只建立一个加油站的最小距离和。其实也不能这个不能严格算是一个DP,因为我们知道如果要距离之和最小,那么一定是在中间位置,那么我们只需要线性递推出距离就可以了。
当天晚上更新一下,因为我怕自己解释不清楚,所以就重新来解释一下\(g\)数组,也就是最短距离和数组是如何求解的。
非常清楚的是\(g[i][j]\)如果是暴力求解枚举两个端点,然后在枚举一个区间内的一个点,然后去最小值,但是明显常数太大。
但是很明显就可以得到一个类似于DP的递推式。考虑最后一个j对于答案的贡献,因为很明显我们答案一定是在中间的某一个点,那么建立加油站的点一定是在\((i+j)/2\)这个地方,那么这个距离就是\(g[i][j-1]+a[j]-a[(i+j)/2]\)。这样我们就把一个三维的转移降到了两维了。
那么考虑DP的边界,\(f[i][1]=g[1][i]\),意思就是。。好像没有什么意思,两者的意义好像本身就是一样的。
总结一下:\(f[i][j]\)表示前i个小屋,建立j个加油站的最小距离。
用\(O(n^2)\)的时间预处理出\(g[i][j]\)表示第i个小屋到第j个小屋只建立一个加油站的最小距离和。
g数组的计算如上面所讲,那么对于f数组,转移方程式就是\(f[i][j]=min(f[i][j],f[k][j-1],g[k+1][i])\)
万恶的poj还是不能用万能头,吐槽吐槽吐槽(有生之年能看到poj能用bits吗?)
ac代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define N 305
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; T fl = 1;
char ch = 0;
while (ch < '0' || ch > '9') {
if (ch == '-') fl = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *= fl;
}
int n, m;
int f[N][N], dis[N][N];
int a[N];
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
for (int i = 1; i <= n; i ++) read(a[i]);
for (int i = 1; i <= n; i ++)
for (int j = i + 1; j <= n; j ++)
dis[i][j] = dis[i][j - 1] + a[j] - a[(i + j) / 2];
ms(f, inf);
for (int i = 1; i <= n; i ++)
f[i][1] = dis[1][i];
for (int i = 2; i <= m; i ++) {
for (int j = i; j <= n; j ++)
for (int k = i - 1; k <= j - 1; k ++) {
f[j][i] = min(f[j][i], f[k][i - 1] + dis[k + 1][j]);
}
}
printf("%d\n", f[n][m]);
}
return 0;
}
update/2019/3/24但是我把程序交到洛谷上去之后就T掉了,发现洛谷数据开大了10倍。
所以坑定是要考虑优化了。
回到原来的式子:
\[f[i][j]=min(f[i][j],f[k][j-1],g[k+1][i])\]
感觉长的非常像石子合并的方程。
打表发现(原谅我比较弱):满足\(f[a][c]+f[b][d]<=f[a][d]+f[b][d]\)
而且决策单调。
那么我们就考虑四边形不等式优化。
那么就可以从\(f[i][j-1]\)和状态\(f[i+1][j]\)转移过来。
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define N 3005
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; T fl = 1;
char ch = 0;
while (ch < '0' || ch > '9') {
if (ch == '-') fl = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *= fl;
}
int n, m;
int f[N][N], dis[N][N], s[N][N];
int a[N];
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
for (int i = 1; i <= n; i ++) read(a[i]);
for (int i = 1; i <= n; i ++)
for (int j = i + 1; j <= n; j ++)
dis[i][j] = dis[i][j - 1] + a[j] - a[(i + j) / 2];
ms(f, inf);
for (int i = 1; i <= n; i ++)
f[i][1] = dis[1][i];
for (int i = 2; i <= m; i ++) {
s[n + 1][i] = n;
for (int j = n; j >= 1; j --)
for (int k = s[j][i - 1]; k <= s[j + 1][i]; k ++)
if (f[k][i - 1] + dis[k + 1][j] < f[j][i]) {
f[j][i] = f[k][i - 1] + dis[k + 1][j];
s[j][i] = k;
}
}
printf("%d\n", f[n][m]);
}
return 0;
}