Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
This is a simple problem. Each number between 1 and n can be the root node.
1-d dynamical programming can be used to solve this problem.
public class Solution {
public int numTrees(int n) {
int num = 0;
if(n > 0){
int[] trees = new int[n + 1];
trees[0] = 1;
trees[1] = 1;
if( n > 1){
for(int i = 2; i < n + 1; ++i){
trees[i] = 0;
for(int j = 0; j < i; ++j){
trees[i] += trees[j] * trees[i - 1 - j];
}
}
}
num = trees[n];
}
return num;
}
}