洛谷P1855 榨取kkksc03+二维(两种代价)背包

题目描述

洛谷2的团队功能是其他任何oj和工具难以达到的。借助洛谷强大的服务器资源,任何学校都可以在洛谷上零成本的搭建oj并高效率的完成训练计划。

为什么说是搭建oj呢?为什么高效呢?

因为,你可以上传私有题目,团队外别人是无法看到的。我们还能帮你们评测!

你可以创建作业,给组员布置任务,查看组员的完成情况,还可以点评任意一份代码!

你可以创建比赛!既可以是oi赛制还可以是acm赛制!既可以是团队内部的私有比赛,也可以公开赛,甚至可以指定谁可以参加比赛。这样,搞“x校联赛”最合适不过了。洛谷凭借这个功能,希望能够提供公开及私有比赛的另外一个平台。

值得说明的是,本次比赛就是采用团队私有题目+邀请比赛的机制。

洛谷的运营组决定,如果一名oier向他的教练推荐洛谷,并能够成功的使用(成功使用的定义是:该团队有20个或以上的成员,上传10道以上的私有题目,布置过一次作业并成功举办过一次公开比赛),那么他可以浪费掉kkksc03的一些时间的同时消耗掉kkksc03的一些金钱以满足自己的一个愿望。

Kkksc03的时间和金钱是有限的,所以他很难满足所有同学的愿望。所以他想知道在自己的能力范围内,最多可以完成多少同学的愿望?

输入输出格式

输入格式:

第一行,n M T,表示一共有n(n<=100)个愿望,kkksc03 的手上还剩M(M<=200)元,他的暑假有T(T<=200)分钟时间。

第2~n+1行 mi,ti 表示第i个愿望所需要的时间和金钱。

输出格式:

一行,一个数,表示kkksc03最多可以实现愿望的个数。

输入输出样例

输入样例#1: 复制
6 10 10
1 1
2 3 
3 2
2 5
5 2
4 3
输出样例#1: 复制
4

说明

提示 第1,2,3,6个






写法一:三位dp

dp【i】【j】【k】代表前i个愿望,在剩余j块钱、k分钟能呗满足的个数

dp【i】【j】【k】=max(dp【i-1】【j】【k】,dp【i-1】【j-money【i】】【k-time【i】】)

如果没有j、k任意一个在可选范围外dp【i】【j】【k】必须等于dp【i-1】【j】【k】,否则会有的dp数组的位置没填上

#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 201
int dp[101][Maxn][Maxn];

int n, M, T;
int money[Maxn];
int time[Maxn];
int main()
{
	//freopen("1.txt", "r", stdin);
	cin >> n >> M >> T;
	for (int i = 1; i <= n; i++)
		cin >> time[i] >> money[i];

	//dp[0][0][0] = 1;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 0; j <= M; j++)
		//for (int j = M; j >= money[i]; j--)
		{
			for (int k = 0; k <= T; k++)
			//for (int k = T; k >= time[i]; k--)
			{
				if (time[i] <= k&&money[i] <= j)
					dp[i][j][k] = max(dp[i - 1][j][k], dp[i - 1][j - money[i]][k - time[i]] + 1);
				else
					dp[i][j][k] = dp[i - 1][j][k];//貌似这里是关键啊,j或k有一个超过范围的必须只能从dp【i-1】【j】【k】转移过来呢
				//cout << dp[i][j][k] << endl;
			}
		}
	}
	cout << dp[n][M][T];
	return 0;
}

写法二:二维dp

少了一维,循环j和循环k逆序就可以了。

#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 201
int dp[Maxn][Maxn];

int n, M, T;
int money[Maxn];
int time[Maxn];

int main()
{
	//freopen("1.txt", "r", stdin);
	cin >> n >> M >> T;
	for (int i = 1; i <= n; i++)
		cin >> time[i] >> money[i];

	for (int i = 1; i <= n; i++)
	{
		for (int j = M; j >= money[i];j--)
		for (int k = T; k >= time[i]; k--)
			dp[j][k] = max(dp[j][k], dp[j - money[i]][k - time[i]]+1);
	}
	cout << dp[M][T];
	return 0;
}

阅读更多

扫码向博主提问

好雨天堂

非学,无以致疑;非问,无以广识
去开通我的Chat快问
个人分类: 动态规划
上一篇符号三角形
下一篇洛谷 P1736 创意吃鱼法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭