FlinkSQL窗口实例分析

Windowing TVFs

Windowing table-valued functions (Windowing TVFs),即窗口表值函数
注意:窗口函数不可以单独使用,需要聚合函数,按照 window_start、window_end 分区,即存在:group by window_start,window_end

  • TUMBLE函数采用三个必需参数,一个可选参数:

    TUMBLE(TABLE data, DESCRIPTOR(timecol), size [, offset ])

    data:是一个表参数,可以是与时间属性列的任何关系。
    timecol:是一个列描述符,指示数据的哪些时间属性列应映射到滚动窗口。
    size:是指定翻滚窗口宽度的持续时间。
    offset: 是一个可选参数,用于指定窗口开始移动的偏移量。

  • HOP采用 4 个必需参数和 1 个可选参数:

    HOP(TABLE data, DESCRIPTOR(timecol), slide, size [, offset ])

    data:是一个表参数,可以是与时间属性列的任何关系。
    timecol:是一个列描述符,指示数据的哪些时间属性列应映射到跳跃窗口。
    slide:是指定连续跳跃窗口开始之间的持续时间的持续时间
    size:是指定跳跃窗口宽度的持续时间。
    offset: 是一个可选参数,用于指定窗口开始移动的偏移量。

  • CUMULATE采用 4 个必需参数和 1 个可选参数:

    CUMULATE(TABLE data, DESCRIPTOR(timecol), step, size)

    data:是一个表参数,可以是与时间属性列的任何关系。
    timecol:是一个列描述符,指示数据的哪些时间属性列应映射到累积窗口。
    step:是指定连续累积窗口末尾之间增加的窗口大小的持续时间。
    size:是指定累积窗口最大宽度的持续时间。size必须是 的整数倍step。
    offset: 是一个可选参数,用于指定窗口开始移动的偏移量。

滚动窗口

CREATE TABLE kafka_table(
        mid bigint,
        db string,
        sch string,
        tab string,
        opt string,
        ts bigint,
        ddl string,
        err string,
        src map < string, string >,
        cur map < string, string >,
        cus map < string, string >,
        event_time as cast(TO_TIMESTAMP_LTZ(ts,3) AS TIMESTAMP(3)), -- TIMESTAMP(3)/TIMESTAMP_LTZ(3)
        WATERMARK FOR event_time AS event_time - INTERVAL '2' MINUTE     --SECOND
) WITH (
  'connector' = 'kafka',
  'topic' = 't0',
  'properties.bootstrap.servers' = 'xx.xx.xx.xx:9092',
  'properties.group.id' = 'g1',
  'scan.startup.mode' = 'earliest-offset',  --group-offsets/earliest-offset/latest-offset
  'format' = 'json'
);

create view tmp as
select
            COALESCE(cur['group_name'], src['group_name']) group_name,
            COALESCE(cur['batch_number'], src['batch_number']) batch_number,
            event_time
from kafka_table
where UPPER(opt) <> 'DELETE';
--注意:窗口函数不可以单独使用,需要聚合函数,按照 window_start、window_end 分区

select window_start,window_end,window_time,group_name,count(*) as cnt from
TABLE(TUMBLE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '10' MINUTES))
group by window_start,window_end,window_time,group_name

滑动窗口

CREATE TABLE kafka_table(
        mid bigint,
        db string,
        sch string,
        tab string,
        opt string,
        ts bigint,
        ddl string,
        err string,
        src map < string, string >,
        cur map < string, string >,
        cus map < string, string >,
        event_time as cast(TO_TIMESTAMP_LTZ(ts,3) AS TIMESTAMP(3)), -- TIMESTAMP(3)/TIMESTAMP_LTZ(3)
        WATERMARK FOR event_time AS event_time - INTERVAL '2' MINUTE     --SECOND
) WITH (
  'connector' = 'kafka',
  'topic' = 't0',
  'properties.bootstrap.servers' = 'xx.xx.xx.xx:9092',
  'properties.group.id' = 'g1',
  'scan.startup.mode' = 'earliest-offset',  --group-offsets/earliest-offset/latest-offset
  'format' = 'json'
);

create view tmp as
select
            COALESCE(cur['group_name'], src['group_name']) group_name,
            COALESCE(cur['batch_number'], src['batch_number']) batch_number,
            event_time
from kafka_table
where UPPER(opt) <> 'DELETE';
--注意:窗口函数不可以单独使用,需要聚合函数,按照 window_start、window_end 分区

select window_start,window_end,window_time,group_name,count(*) as cnt from
TABLE(HOP(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '60' SECOND,INTERVAL '10' MINUTES))
group by window_start,window_end,window_time,group_name

累计窗口

CREATE TABLE kafka_table(
        mid bigint,
        db string,
        sch string,
        tab string,
        opt string,
        ts bigint,
        ddl string,
        err string,
        src map < string, string >,
        cur map < string, string >,
        cus map < string, string >,
        event_time as cast(TO_TIMESTAMP_LTZ(ts,3) AS TIMESTAMP(3)), -- TIMESTAMP(3)/TIMESTAMP_LTZ(3)
        WATERMARK FOR event_time AS event_time - INTERVAL '2' MINUTE     --SECOND
) WITH (
  'connector' = 'kafka',
  'topic' = 't0',
  'properties.bootstrap.servers' = 'xx.xx.xx.xx:9092',
  'properties.group.id' = 'g1',
  'scan.startup.mode' = 'earliest-offset',  --group-offsets/earliest-offset/latest-offset
  'format' = 'json'
);

create view tmp as
select
            COALESCE(cur['group_name'], src['group_name']) group_name,
            COALESCE(cur['batch_number'], src['batch_number']) batch_number,
            event_time
from kafka_table
where UPPER(opt) <> 'DELETE';
--注意:窗口函数不可以单独使用,需要聚合函数,按照 window_start、window_end 分区

select window_start,window_end,window_time,group_name,count(*) as cnt from
TABLE(CUMULATE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '1' HOUR,INTERVAL '24' HOURS)) --从零点开始累计
TABLE(CUMULATE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '60' SECOND,INTERVAL '10' MINUTES))
TABLE(CUMULATE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '1' MINUTE,INTERVAL '1' HOURS))
group by window_start,window_end,window_time,group_name

窗口聚合-多维分析

CREATE TABLE kafka_table(
        mid bigint,
        db string,
        sch string,
        tab string,
        opt string,
        ts bigint,
        ddl string,
        err string,
        src map < string, string >,
        cur map < string, string >,
        cus map < string, string >,
        event_time as cast(TO_TIMESTAMP_LTZ(ts,3) AS TIMESTAMP(3)), -- TIMESTAMP(3)/TIMESTAMP_LTZ(3)
        WATERMARK FOR event_time AS event_time - INTERVAL '2' MINUTE     --SECOND
) WITH (
  'connector' = 'kafka',
  'topic' = 't0',
  'properties.bootstrap.servers' = 'xx.xx.xx.xx:9092',
  'properties.group.id' = 'g1',
  'scan.startup.mode' = 'earliest-offset',  --group-offsets/earliest-offset/latest-offset
  'format' = 'json'
);

create view tmp as
select
            COALESCE(cur['group_name'], src['group_name']) group_name,
            COALESCE(cur['batch_number'], src['batch_number']) batch_number,
            event_time
from kafka_table
where UPPER(opt) <> 'DELETE';
--注意:窗口函数不可以单独使用,需要聚合函数,按照 window_start、window_end 分区


--实例1:整体聚合
select window_start,window_end,count(*) as cnt from
TABLE(TUMBLE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '10' MINUTES))
group by window_start,window_end

--实例2:根据字段聚合,n个维度
select window_start,window_end,group_name,count(*) as cnt from
TABLE(TUMBLE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '10' MINUTES))
group by window_start,window_end,group_name

--实例3:多维分析GROUPING SETS
select window_start,window_end,group_name,count(*) as cnt from
TABLE(TUMBLE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '10' MINUTES))
group by window_start,window_end,GROUPING SETS((group_name)) --等同于 实例2
group by window_start,window_end,GROUPING SETS((group_name), ()) --等同于 实例1 union all 实例2


--实例4:多维分析GROUPING SETS,多个字段
select window_start,window_end,group_name,batch_number,count(*) as cnt from
TABLE(TUMBLE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '10' MINUTES))
group by window_start,window_end,GROUPING SETS((group_name,batch_number),(group_name),(batch_number),())

--实例5:多维分析CUBE 2^n个维度
select window_start,window_end,group_name,batch_number,count(*) as cnt from
TABLE(TUMBLE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '10' MINUTES))
group by window_start,window_end,CUBE(group_name) --等同于group by window_start,window_end,GROUPING SETS((group_name), ())
group by window_start,window_end,CUBE(group_name,batch_number) --等同于实例4

--实例6:多维分析ROLLUP  n+1个维度
select window_start,window_end,group_name,batch_number,count(*) as cnt from
TABLE(TUMBLE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '10' MINUTES))
group by window_start,window_end,ROLLUP(group_name) --等同于 实例1 union all 实例2
group by window_start,window_end,ROLLUP(group_name,batch_number) --等同于GROUPING SETS((group_name,batch_number),(group_name),())

窗口topN

Window Top-N 语句的语法:

SELECT [column_list]
FROM (
   SELECT [column_list],
     ROW_NUMBER() OVER (PARTITION BY window_start, window_end [, col_key1...]
       ORDER BY col1 [asc|desc][, col2 [asc|desc]...]) AS rownum
   FROM table_name) -- relation applied windowing TVF
WHERE rownum <= N [AND conditions]
CREATE TABLE kafka_table(
        mid bigint,
        db string,
        sch string,
        tab string,
        opt string,
        ts bigint,
        ddl string,
        err string,
        src map < string, string >,
        cur map < string, string >,
        cus map < string, string >,
        event_time as cast(TO_TIMESTAMP_LTZ(ts,3) AS TIMESTAMP(3)), -- TIMESTAMP(3)/TIMESTAMP_LTZ(3)
        WATERMARK FOR event_time AS event_time - INTERVAL '2' MINUTE     --SECOND
) WITH (
  'connector' = 'kafka',
  'topic' = 't0',
  'properties.bootstrap.servers' = 'xx.xx.xx.xx:9092',
  'properties.group.id' = 'g1',
  'scan.startup.mode' = 'earliest-offset',  --group-offsets/earliest-offset/latest-offset
  'format' = 'json'
);

create view tmp as
select
            COALESCE(cur['group_name'], src['group_name']) group_name,
            COALESCE(cur['batch_number'], src['batch_number']) batch_number,
            event_time
from kafka_table
where UPPER(opt) <> 'DELETE';
--注意:窗口函数不可以单独使用,需要聚合函数,按照 window_start、window_end 分区


--方式1:窗口 Top-N 紧随窗口聚合之后
create view tmp_window as
select window_start,window_end,window_time,group_name,count(*) as cnt from
TABLE(TUMBLE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '24' HOURS))
group by window_start,window_end,window_time,group_name;

--计算每个翻滚 24小时窗口内pv最高的前 3 名机构(即每天PV最高的前三名)
select * from
    (
    select * ,ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY cnt DESC) as rn
    from tmp_window
    ) t
where rn <=3

--计算每个机构pv最高的前 3天
select * from
    (
    select * ,ROW_NUMBER() OVER (PARTITION BY group_name ORDER BY cnt DESC) as rn
    from tmp_window
    ) t
where rn <=3

--方式2:窗口 Top-N 紧随窗口 TVF 之后
select *
from
    (
    select
    window_start
    ,window_end
    ,window_time
    ,group_name
    ,ts
    ,ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY ts DESC) AS rn
    from TABLE(TUMBLE(TABLE tmp, DESCRIPTOR(event_time), INTERVAL '24' HOURS))
    )
where rn <=3

窗口去重

Flink使用去重的方式,就像Window Top-N查询ROW_NUMBER()的方式一样。理论上,
窗口重复数据删除是窗口 Top-N 的一种特殊情况,其中 N 为 1,并且按处理时间或事件时间排序
Window Deduplication 语句的语法:

SELECT [column_list]
FROM (
   SELECT [column_list],
     ROW_NUMBER() OVER (PARTITION BY window_start, window_end [, col_key1...]
       ORDER BY time_attr [asc|desc]) AS rownum
   FROM table_name) -- relation applied windowing TVF
WHERE (rownum = 1 | rownum <=1 | rownum < 2) [AND conditions]
CREATE TABLE kafka_table(
        mid bigint,
        db string,
        sch string,
        tab string,
        opt string,
        ts bigint,
        ddl string,
        err string,
        src map < string, string >,
        cur map < string, string >,
        cus map < string, string >,
        group_name as COALESCE(cur['group_name'], src['group_name']),
        batch_number as COALESCE(cur['batch_number'], src['batch_number']),
        event_time as cast(TO_TIMESTAMP_LTZ(ts,3) AS TIMESTAMP(3)), -- TIMESTAMP(3)/TIMESTAMP_LTZ(3)
        WATERMARK FOR event_time AS event_time - INTERVAL '2' MINUTE     --SECOND
) WITH (
  'connector' = 'kafka',
  'topic' = 't0',
  'properties.bootstrap.servers' = 'xx.xx.xx.xx:9092',
  'properties.group.id' = 'g1',
  'scan.startup.mode' = 'earliest-offset',  --group-offsets/earliest-offset/latest-offset
  'format' = 'json'
);

select *
from
    (
    select
    window_start
    ,window_end
    ,group_name
    ,event_time
    ,ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY event_time DESC) AS rn
    from TABLE(TUMBLE(TABLE kafka_table, DESCRIPTOR(event_time), INTERVAL '24' HOURS))
    )
where rn =1
### Flink SQL 窗口聚合概述 Flink SQL 支持多种类型的窗口操作来处理流数据,这些操作允许对一段时间内的事件进行聚合分析。对于不包含主键的数据表,可以通过定义时间属性并应用特定的时间窗口来进行有效的查询和统计[^1]。 ### 滚动窗口查询实例 当执行滚动窗口查询时,每条记录会被分配到一个固定大小且互不重叠的时间区间内。下面是一个具体的例子: 假设有一个名为 `clicks` 的输入表,其中包含了用户的点击行为以及发生的时间戳字段 `ts` 和水印声明用于表示事件时间。为了计算过去五分钟内每个广告ID (`ad_id`) 上发生的总点击次数,可以采用如下SQL语句: ```sql CREATE TABLE clicks ( user_name STRING, ad_id BIGINT, ts TIMESTAMP(3), WATERMARK FOR ts AS ts - INTERVAL '5' SECOND ) WITH (...); SELECT TUMBLE_START(ts, INTERVAL '5' MINUTE), -- 开始时间 ad_id, COUNT(*) as cnt_clicks FROM clicks GROUP BY TUMBLE(ts, INTERVAL '5' MINUTE), ad_id; ``` 此代码片段展示了如何创建带有时间特性的源表,并利用 `TUMBLE()` 函数实现按五分钟左右间隔划分的滚动窗口聚合操作。 ### CUMULATE累积窗口示例 除了标准的滑动或翻滚窗口外,还可以使用累加窗口(Cumulate Windows),它能够提供更加灵活的时间范围控制。例如,如果希望每隔两分钟输出一次最近十分钟内的统计数据,则可以用以下方式构建查询: ```sql SELECT CUMULATE(ts, INTERVAL '2' MINUTE, INTERVAL '10' MINUTE) as win_start, ad_id, SUM(click_count) OVER w as total_clicks_in_10min FROM clicks WINDOW w AS (PARTITION BY ad_id ORDER BY ts RANGE BETWEEN INTERVAL '10' MINUTE PRECEDING AND CURRENT ROW); ``` 这里引入了 `CUMULATE()` 来指定累积窗口参数,同时配合开窗子句实现了基于分区有序列化的累计求和逻辑。 ### 关于Windowing TVFs 值得注意的是,在新版Flink SQL 中推荐使用 Windowing Table Valued Functions(TVFs),因为它们不仅遵循SQL标准而且功能更为强大,比如支持像Top N这样的复杂运算;而传统的分组窗口仅限于做简单的聚合工作[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值